

f-REGULAR f-DERIVATIONS ON p-SEMI SIMPLE BCIK-ALGEBRAS

S. Rethina Kumar

Assistant Professor, Department of Mathematics, Bishop Heber College, Trichy, Tamilnadu. India.

Abstract

Introduced BCIK – algebra and its properties, and also we introduce the notion of derivation of a BCIK-algebra and investigate some related properties. Using the idea of regular f-derivation of a BCIK-algebra and investigate related properties. In this paper, the notion of left-right (resp., right-left) f-derivation of a BCIK-algebra is introduced, and some related properties are investigated. Using regular f-derivation, we give characterizations of a regular f-derivation on p -semi simple BCIK-algebra.

Keywords: BCIK-algebra, p-semi simple, f-derivations, f-regular.

1. Introduction

In 1966, Y. Imai and K. Iseki [1, 2] defined BCK – algebra in this notion originated from two different sources: one of them is based on the set theory the other is form the classical and non - classical propositional calculi. In [3]. Y.B. Jun and X.L. Xin applied the notion of derivation in ring and near – ring theory to BCI – algebras, and they also introduced a new concept called a derivation in BCIalgebras and its properties. In 2021 [4], S Rethina Kumar introduce combination BCK-algebra and BCI-algebra to define BCIK-algebra and its properties and also using Lattices theory to derived the some basic definitions, and they also the idea introduced a regular f-derivation in BCIK-algebras. We give the Characterizations f-derivation p-semi simple algebra and its properties. After the work of Jun and Xin (2004) [3], many research articles have appeared on the derivations of BCI-algebras In different aspects as follows: In 2021[5], S Rehina Kumar have given the notion of t-derivation of BCIK-algebras and studied p-semi simple BCIK-algebras by using the idea of regular t-derivation in BCIK-algebras have extended the results of BCIK-algebra in the same paper they defined and studied the notion of left derivation of BCIK-algebra and investigated some properties of left derivation in psemi simple BCIK-algebras. In 2009 [6], Ozturk and Ceven have defined the notion of derivation and generalized derivation determined by a derivation for a complicated subtraction algebra and discussed some related properties. Also, in 2009 [6], Ozturk et al. have introduced the notion of generalized derivation in BCI-algebras and established some results. Further, they have given the idea of torsion free BCI-algebra and explored some properties. In 2010 [7], Al-Shehri has applied the notion of leftright (resp., right-left) derivation in BCI-algebra in BCI-algebra and obtained some of its properties. In 2011[19], IIbira et al, have studied the notion of left-right (resp., right-left) symmetric bi derivation in BCI-algebras.

Motivated by a lot work done on f-derivations of BCIK-algebra and on derivations of other related abstract algebraic structures, in this paper we introduce the notion of regular f-derivation p-semi simple BCIK-algebras and obtain some of its related properties.

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

2. Preliminaries

Definition 2.1. [5] BCIK algebra

Let X be a non-empty set with a binary operation * and a constant 0. Then (X, *, 0) is called a BCIK Algebra, if it satisfies the following axioms for all x, y, z X: (BCIK-1) x*y = 0, y*x = 0, z*x = 0 this imply that x = y = z.

(BCIK-2)((x*y)*(y*z))*(z*x) = 0.

(BCIK-3) $(x^*(x^*y))^* y = 0.$

(BCIK-4) $x^*x = 0$, $y^*y = 0$, $z^*z = 0$.

(BCIK-5) $0^*x = 0, 0^*y = 0, 0^*z = 0.$

For all x, y, z X. An inequality is a partially ordered set on X can be defined x y if and only if (x*y)*(y*z) = 0.

Properties 2.2. [5] I any BCIK – Algebra X, the following properties hold for all x, y, z X:

(1) 0 X. (2) x*0 = x. (3) x*0 = 0 implies x = 0. (4) $0^*(x^*y) = (0^*x)^*(0^*y)$. (5) $X^*y = 0$ implies x = y. (6) $X^{*}(0^{*}y) = y^{*}(0^{*}x)$. (7) $0^{*}(0^{*}x) = x$. (8) x^*y X and x X imply y X. (9) (x*y) * z = (x*z) * y(10) $x^*(x^*(x^*y)) = x^*y$. (11) $(x^*y)^*(y^*z) = x^*y$. (12) 0 x y for all x, y X. (13) x y implies x^*z y*z and z*y z*x. (14) x*y x. (15) $x^*y \quad z \Leftrightarrow x^*z \quad y \text{ for all } x, y, z \quad X$ (16) $x^*a = x^*b$ implies a = b where a and b are any natural numbers (i. e)., a, b N (17) $a^*x = b^*x$ implies a = b. (18) $a^*(a^*x) = x$.

Definition 2.3. [4, 5, 10], Let X be a BCIK – algebra. Then, for all x, y, z X:

- (1) X is called a positive implicative BCIK algebra if (x*y) * z = (x*z) * (y*z).
- (2) X is called an implicative BCIK algebra if $x^*(y^*x) = x$.
- (3) X is called a commutative BCIK algebra if $x^*(x^*y) = y^*(y^*x)$.
- (4) X is called bounded BCIK algebra, if there exists the greatest element 1 of X, and for any x = X, 1*x is denoted by GG_x,
- (5) X is called involutory BCIK algebra, if for all x X, $GG_x = x$.

Definition 2.4. [5] Let X be a bounded BCIK-algebra. Then for all x, y X:

(1) G1 = 0 and G0 = 1, (2) GG_x x that $GG_x = G(G_x)$, (3) $G_x * G_y$ y*x, (4) y x implies G_x G_y , (5) $G_{x*y} = G_{y*x}$ (6) $GGG_x = G_x$.

Theorem 2.5. [5] Let X be a bounded BCIK-algebra. Then for any x, y X, the following hold:

- (1) X is involutory,
- (2) $x^*y = G_y * G_x$,
- (3) $x^*G_y = y^*G_x$,
- (4) x G_y implies y G_x .

Theorem 2.6. [5] Every implicative BCIK-algebra is a commutative and positive implicative BCIK-algebra.

Definition 2.7. [4,5] Let X be a BCIK-algebra. Then:

- (1) X is said to have bounded commutative, if for any x, y X, the set $A(x,y) = \{t X : t^*x y\}$ has the greatest element which is denoted by x o y,
- (2) (X, *,) is called a BCIK-lattices, if (X,) is a lattice, where is the partial BCIK-order on X, which has been introduced in Definition 2.1.

Definition 2.8. [5] Let X be a BCIK-algebra with bounded commutative. Then for all x, y, z X:

- (1) y x o (y*x),
 (2) (x o z) * (y o z) x*y,
 (3) (x*y) * z = x*(y o z),
- (3) $(x^{+}y)^{+}z = x^{+}(y \circ z),$ (4) If x y, then x o z y o z,
- (4) If x = y, then x = z = y = z(5) $z^*x = y \Leftrightarrow z = x = y$.

Theorem 2.9. [4,5] Let X be a BCIK-algebra with condition bounded commutative. Then, for all x, y, z = X, the following are equivalent:

- (1) X is a positive implicative,
- (2) x y implies x o y = y,
- (3) x o x = x,
- (4) $(x \circ y) * z = (x*z) \circ (y*z),$
- (5) x o y = x o (y*x).
- **Theorem 2.10.** [4,5] Let X be a BCIK-algebra.
 - (1) If X is a finite positive implicative BCIK-algebra with bounded and commutative the (X,) is a distributive lattice,
 - (2) If X is a BCIK-algebra with bounded and commutative, then X is positive implicative if and only if (X, \cdot) is an upper semi lattice with $x = y = x \circ y$, for any x, y = X,
 - (3) If X is bounded commutative BCIK-algebra, then BCIK-lattice (X, \cdot) is a distributive lattice, where $x = y^*(y^*x)$ and $x = y^*(G_x = G_y)$.

Theorem 2.11. [4,5] Let X be an involutory BCIK-algebra, Then the following are equivalent:

- (1)(X,) is a lower semi lattice,
- (2)(X,) is an upper semi lattice,
- (3)(X,) is a lattice.

Theorem 2.12. [5] Let X be a bounded BCIK-algebra. Then:

- (1) every commutative BCIK-algebra is an involutory BCIK-algebra.
- (2) Any implicative BCIK-algebra is a Boolean lattice (a complemented distributive lattice).

Theorem 2.13. [5, 11] Let X be a BCK-algebra, Then, for all x, y, z X, the following are equivalent: (1) X is commutative,

(2) $x^*y = x^*(y^*(y^*x)),$

- (3) $x^{*}(x^{*}y) = y^{*}(y^{*}(x^{*}(x^{*}y))),$
- (4) x y implies $x = y^*(y^*x)$.

3. Regular Left derivation p-semi simple BCIK-algebra

Definition 3.1. Let X be a p-semi simple BCIK-algebra. We define addition + as $x + y = x^*(0^*y)$ for all x, y X. Then (X, +) be an abelian group with identity 0 and $x - y = x^*y$. Conversely, let (X, +) be an abelian group with identity 0 and let $x - y = x^*y$. Then X is a p-semi simple BCIK-algebra and $x + y = x^*(0^*y)$,

for all x, y X (see [6]). We denote x $y = y * (y * x), 0 * (0 * x) = a_x$ and

 $L_p(X) = \{a \quad X / x * a = 0 \text{ implies } x = a, \text{ for all } x \in X\}.$

For any x X. $V(a) = \{a \ X / x * a = 0\}$ is called the branch of X with respect to a. We have $x * y \ V(a * b)$, whenever x V(a) and y V(b), for all x, y X and all a, b L_p(X), for $0 * (0 * a_x) = a_x$ which implies that $a_x * y \ L_p(X)$ for all y X. It is clear that $G(X) \subset L_p(X)$ and x * (x * a) = a and

 $a * x = L_p(X)$, for all $a = L_p(X)$ and all x = X.

Definition 3.2. ([5]) Let X be a BCIK-algebra. By a (l, r)-derivation of X, we mean a self d of X satisfying the identity

 $d(x * y) = (d(x) * y) \land (x * d(y))$ for all x, y X.

If X satisfies the identity

 $d(x * y) = (x * d(y)) \land (d(x) * y)$ for all x, y X,

then we say that d is a (r, l)-derivation of X Moreover, if d is both a (r, l)-derivation and (r, l)-derivation of X, we say that d is a derivation of X.

Definition 3.3. ([5]) A self-map d of a BCIK-algebra X is said to be regular if d (0) = 0. **Definition 3.4.** ([5]) Let d be a self-map of a BCIK-algebra X. An ideal A of X is said to be d-invariant, if d(A) = A. In this section, we define the left derivations

In this section, we define the left derivations

Definition 3.5. Let X be a BCIK-algebra By a left derivation of X, we mean a self-map D of X satisfying

 $D(x * y) = (x * D(y)) \land (y * D(x)), \text{ for all } x, y X.$

Example 3.6. Let $X = \{0,1,2\}$ be a BCIK-algebra with Cayley table defined by

$$Define a map D: X \to X by$$
$$D(x) = \begin{cases} 2ifx = 0,1\\0ifx = 2. \end{cases}$$

Then it is easily checked that D is a left derivation of X.

Proposition 3.7. Let D be a left derivation of a BCIK-algebra X. Then for all x, y X, we have (1) x * D(x) = y * D(y).

(1) x + D(x) = y + D(x)(2) $D(x) = a_{D(x)-x}$. (3) $D(x) = D(x) \wedge x$. (4) $D(x) = L_p(X)$.

Proof.

(1) Let $x, y \in X$. Then $D(0) = D(x * x) = (x * D(x)) \land (x * D(x)) = x * D(x).$ Similarly, D(0) = y * D(y). So, D(x) = y * D(y). 2) Let x X. Then D(x) = D(x * 0) $= (x * D(0)) \land (0 * D(x))$ = (0 * D(x)) * ((0 * D(x)) * (x * D(0))) $\leq 0 * (0 * (x * D(x))))$ = 0 * (0 * (x * (x * D(x)))) $= 0 * (0 * (D(x) \land x))$ $= a_{D(x) x}$. Thus $D(x) \leq a_{D(x)}$ x. But $a_{D(x) x} = 0(0 * (D(x) \land x)) \le D(x) \land x \le D(x).$ Therefore, $D(x) = a_{D(x)} x$. (3) Let x = X. Then using (2), we have $D(x) = a_{D(x) x} \leq D(x) \wedge x.$ But we know that $D(x) \land x \le D(x)$, and hence (3) holds. (4) Since $a_x = L_p(X)$, for all x = X, we get $D(x) = L_p(X)$ by (2). **Remark 3.8.** Proposition 3.3(4) implies that D(X) is a subset of L _p(X). **Proposition 3.9.** Let D be a left derivation of a BCIK-algebra X. Then for all x, y X, we have (1) Y * (y * D(x)) = D(x).

(2) $D(x) * y = L_p(X)$.

Proposition 3.10. Let D be a left derivation of a BCIK-algebra of a BCIK-algebra X. Then (1) $D(0) = L_p(X)$.

Impact Factor: 6.089 Peer Reviewed Monthly Journal www.ijmdrr.com

I.IMDRR E- ISSN -2395-1885 ISSN -2395-1877

- (2) D(x) = 0 + D(x), for all x X.
- (3) D(x + y) = x + D(y), for all x, y $L_{p}(X)$.
- (4) D(x) = x, for all x X if and only if D(0) = 0.
- (5) D(x) = G(X), for all x = G(X).

Proof.

- (1) Follows by Proposition 3.3(4).
- (2) Let x X. From Proposition 3.3(4), we get $D(x) = a_{D(x)}$, so we have

 $D(x) = a_{D(x)} = 0 * (0 * D(x)) = 0 + D(x).$ (3) Let x, y $L_p(X)$. Then D(x + y) = D(x * (0 * y)) $= (x * D(0 * y)) \land ((0 * y) * D(x))$ = ((0 * y) * D(x)) * (((0 * y) * D(x) * (x * D(0 * y))))= x * D(0 * y) $= x * ((0 * D(y)) \land (y * D(0)))$ = x * D(0 * y)= x * (0 * D(y)) $= \mathbf{x} + \mathbf{D}(\mathbf{y}).$ (4) Let D(0) = 0 and x X. Then $D(x) = D(x) \land x = x * (x * D(x)) = x * D(0) = x * 0 = x.$ Conversely, let D(x) = x, for all x X. So it is clear that D(0) = 0. (5) Let x G(x). Then $0^* = x$ and so D(x) = D(0 * x) $= (0 * D(x)) \land (x * D(0))$ = (x * D(0)) * ((x * D(0)) * (0 * D(x)))= 0 * D(x).This give D(x) = G(X).

Remark 3.11. Proposition 3.6(4) shows that a regular left derivation of a BCIK-algebra is the identity map. So we have the following:

Proposition 3.12. A regular left derivation of a BCIK-algebra is trivial.

Remark 3.13. Proposition 3.6(5) gives that $D(x) = G(X) \subset L_p(X)$.

Definition 3.14. An ideal A of a BCIK-algebra X is said to be D-invariant if $D(A) \subset A$.

Now, Proposition 3.8 helps to prove the following theorem.

Theorem 3.15. Let D be a left derivation of a BCIK-algebra X. Then D is regular if and only if ideal of X is D-invariant.

Proof.

Let D be a regular left derivation of a BCIK-algebra X. Then Proposition 3.8. gives that D(x) = x, for all

X. Let y D(A), where A is an ideal of X. Then y = D(x) for some x A. Thus Х Y * x = D(x) * x = x * x = 0Δ

Then y A and $D(A) \subset A$. Therefore, A is D-invariant.

Conversely, let every ideal of X be D-invariant. Then $D(\{0\}) \subset \{0\}$ and hence D(0) and D is regular.

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

Finally, we give a characterization of a left derivation of a p-semi simple BCIK-algebra. **Proposition 3.16.** Let D be a left derivation of a p-semi simple BCIK-algebra. Then the following hold for all x, y X: (1) D(x * x) = x * D(x)

(1) D(x * y) = x * D(y). (2) D(x) * x = D(y) * Y. (3) D(x) * x = y * D(y). **Proof.** (1) Let $x, y \in X$. Then $D(x * y) = (x * D(y)) \land \land (y * D(x)) = x * D(y).$ (2) We know that $(x * y) * (x * D(y)) \le D(y) * y$ and $(y * x) * (y * D(x)) \le D(x) * x.$ This means that ((x * y) * (x * D(y))) * (D(y) * y) = 0, and ((y * x) * (y * D(x))) * (D(x) * x) = 0.So ((x * y) * (x * D(y))) * (D(y) * y) = ((y * x) * (y * D(x))) * (D(x) * x).(I) Using Proposition 3.3(1), we get, (x * y) * D(x * y) = (y * x) * D(y * x).(II) By (I), (II) yields (x * y) * (x * D(y)) = (y * x) * (y * D(x)).Since X is a p-semi simple BCIK-algebra. (I) implies that D(x) * x = D(y) * y.(3) We have, D(0) = x * D(x). From (2), we get D(0) * 0 = D(y) * y or D(0) = D(y) * y. So D(x) * x = y * D(y).

Theorem 3.17. In a p-semi simple BCIK-algebra X a self-map D of X is left derivation if and only if and if it is derivation.

Proof.

Assume that D is a left derivation of a BCIK-algebra X. First, we show that D is a (r, l)-derivation of X. Then

$$D(x * y) = x * D(y)$$

= (D(x) * y) * ((D(x) * Y) * (x * D(y)))
= (x * D(y)) \land (D(x) * y).

Now, we show that D is a (r, l)-derivation of X. Then

D(x * Y) = x * D(y)= (x * 0) * D(y) = (x * (D(0) * D(0)) * D(y) = (x * ((x * D(x)) * (D(y) * y))) * D(y) = (x * ((x * D(y)) * (D(x) * y))) * D(y) = (x * D(y) * ((x * D(y)) * (D(x) * Y)) = (D(x) * y) \land (x * D(y)). Therefore, D is a derivation of X. Conversely, let D be a derivation of X.

Conversely, let D be a derivation of X. So it is a (r, l)-derivation of X. Then $D(x * y) = (x * D(y)) \land (D(x) * y)$

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

$$= (D(x) * y) * ((D(x) * y) * (x * D(y)))$$

= x * D(y) = (y * D(x)) * ((y * D(x)) * (x * D(y)))
= (x * D(y)) \land (y * D(x)).

Hence, D is a left derivation of X.

4. t-Derivations in BCIK-algebra /p-Semi simple BCIK-algebra

The following definitions introduce the notion of t-derivation for a BCIK-algebra.

Definition 4.1. Let X be a BCIK-algebra. Then for t X, we define a self-map $d_t : X \rightarrow X$ by $d_t(x) = x * t$ for all x X.

Definition 4.2. Let X be a BCIK-algebra. Then for any t X, a self-map $d_t : X \rightarrow X$ is called a left-right t-derivation or (l,r)-t-derivation of X if it satisfies the identity $d_t(x * Y) = (d_t(x) * y) \land (x * d_t(y))$ for all

x, y X.

Definition 4.3. Let X be a BCIK-algebra. Then for any t X, a self-map $d_t : X \to X$ is called a left-right t-derivation or (l, r)-t-derivation of X if it satisfies the identity $d_t(x * y) = (x * d_t(y)) \land (d_t(x) * y)$ for all x, y X.

Moreover, if d_t is both a (l, r) and a (r, l)-t-derivation on X, we say that d_t is a t-derivation on X. **Example 4.4.** Let $X = \{0,1,2\}$ be a BCIK-algebra with the following Cayley table:

*	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

For any t X, define a self-map $d_t : X \to X$ by $d_t(x) = x * t$ for all x X. Then it is easily checked that d_t is a t-derivation of X.

Proposition 4.5. Let d_t be a self-map of an associative BCIK-algebra X. Then d_t is a (l, r)-t-derivation of X.

Proof. Let X be an associative BCIK-algebra, then we have

$$\begin{split} d_t(x \, * \, y) &= (x \, * \, y) \\ &= \{x \, * \, (y \, * \, t)\} \, * \, 0 \\ &= \{x \, * \, (y \, * \, t)\} \, * \, [\{x \, * \, (y \, * \, t)\} \, * \{x \, * \, (y \, * \, t)\}] \\ &= \{x \, * \, (y \, * \, t)\} \, * \, [\{x \, * \, (y \, * \, t)\} \, * \, \{(x \, * \, y) \, * \, t\}] \\ &= \{x \, * \, (y \, * \, t)\} \, * \, [\{x \, * \, (y \, * \, t)\} \, * \, \{(x \, * \, t) \, * \, y\}] \\ &= ((x \, * \, t) \, * \, y) \, \wedge \, (x \, * \, (y \, * \, t)) \\ &= (d_t(x) \, * \, y) \, \wedge \, (x \, * \, d_t(y)). \end{split}$$

Proposition 4.6. Let d_t be a self-map of an associative BCIK-algebra X. Then, d_t is a (r, l)-t-derivation of X.

Proof. Let X be an associative BCIK-algebra, then we have

 $\begin{array}{l} d_t(x \,\, {}^* \,\, y) = (x \,\, {}^* \,\, y) \,\, {}^* \,t \\ = \, \{(x \,\, {}^* \,\, t) \,\, {}^* \,\, y\} \,\, {}^* \,0 \end{array}$

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

$$= \{(x * t) * y\} * [\{(x * t) * y\} * \{(x * t) * y)]$$

= $\{(x * t) * y\} * [\{(x * t) * y\} * \{(x * y) * t\}]$
= $\{(x * t) * y\} * [\{(x * t) * y\} * \{x * (y * t)\}]$
= $(x * (y * t)) \land ((x * t) * y)$
= $(x * d_t(y)) \land (d_t(x) * y)$

Combining Propositions 4.5 and 4.6, we get the following Theorem.

Theorem 4.7. Let d_t be a self-map of an associative BCIK-algebra X. Then, d_t is a t-derivation of x. **Definition 4.8.** A self-map d_t of a BCIK-algebra X is said to be t-regular if $d_t(0) = 0$. **Example 4.9.** Let $X = \{0, a, b\}$ be a BCIK-algebra with the following Cayley table:

*	0	a	b
0	0	0	b
a	a	0	b
b	b	b	0

(1) For any t X, define a self-map $d_t : X \to X$ by

$$d_{t}(x) = x * t = \begin{cases} b \ if \ x = 0, a \\ 0 \ if \ x = b \end{cases}$$

Then it is easily checked that d_t is (l, r) and (r, l)-t-derivations of X, which is not t-regular.

(2) For any t X, define a self-map
$$d'_t : X \to X$$
 by
 $d'_t(x) = x * t = 0$ if $x = 0$, a

b if
$$x = b$$
.

Then it is easily checked that d_t is (l, r) and (r, l)-t-derivations of X, which is t-regular.

Proposition 4.10. Let d_t be a self-map of a BCIK-algebra X. Then

- (1) If d_t is a (l, r)-t- derivation of x, then $d_t(x) = d_t(x) \land x$ for all x X.
- (2) If d_t is a (r, l)-t-derivation of X, then $d_t(x) = x \wedge d_t(x)$ for all x X if and only if d_t is t-regular.

Proof.

(1) Let d_t be a (l, r)-t-derivation of X, then

$$\begin{array}{l} d_t(x) = d_t(x \, \ast \, 0) \\ = (d_t(x) \, \ast \, 0) \, \land \, (x \, \ast \, d_t(0)) \\ = d_t(x) \, \land \, (x \, \ast \, d_t(0)) \\ = \{x \, \ast \, d_t(0)\} \, \ast \, [\{x \, \ast \, d_t(0)\} \, \ast \, d_t(x)] \\ = \{x \, \ast \, d_t(0)\} \, \ast \, [\{x \, \ast \, d_t(x)\} \, \ast \, d_t(0)] \\ \leq x \, \ast \, \{x \, \ast \, d_t(x)\} \\ = d_t(x) \, \land \, x. \end{array}$$

But $d_t(x) \land x \leq d_t(x)$ is trivial so (1) holds. (2) Let d_t be a (r, l)-t-derivation of X. If $d_t(x) = x \leq d_t(x)$ then $d_t(0) = 0 \land d_t(0)$ $= d_t(0) * \{ d_t(0) * 0 \}$ $= d_t(0) * d_t(0)$ = 0

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

Thereby implying d_t is t-regular. Conversely, suppose that d_t is t-regular, that is $d_t(0) = 0$, then we have $d_t(0) = d_t(x * 0)$

$$\begin{aligned} &= d_t(x * 0) \\ &= (x * d_t(0)) \land (d_t(x) * 0) \\ &= (x * 0) \land d_t(x) \\ &= x \land d_t(x). \end{aligned}$$

The completes the proof.

Theorem 4.11. Let d_t be a (l, r)-t-derivation of a p-semi simple BCIK-algebra X. Then the following hold:

(1) $d_t(0) = d_t(x) * x$ for all x X.

(2) d_t is one-One.

(3) If there is an element x X such that $d_t(x) = x$, then d_t is identity map.

(4) If $x \le y$, then $d_t(x) \le d_t(y)$ for all x, y = X.

Proof.

(1) Let d_t be a (l, r)-t-derivation of a p-semi simple BCIK-algebra X. Then for all x X, we have x * x = 0 and so

- $$\begin{split} d_t(0) &= d_t(x \, * \, x) \\ &= (d_t(x) \, * \, x) \, \land \, (x \, * \, d_t(x)) \\ &= \{x \, * \, d_t(x)\} \, * \, [\{x \, * \, d_t(x)\} \, * \, \{d_t(x) \, * \, x\}] \\ &= d_t(x) \, * \, x \end{split}$$
- (2) Let $d_t(x) = d_t(y) \Longrightarrow x * t = y * t$, then we have x = y and so d_t is one-one.
- (3) Let d_t be t-regular and x X. Then, $0 = d_t(0)$ so by the above part(1), we have $0 = d_t(x) * x$ and, we obtain $d_t(x) = x$ for all x X. Therefore, d_t is the identity map.
- (4) It is trivial and follows from the above part (3).

Let $x \le y$ implying x * y = 0. Now,

$$d_{t}(x) * d_{t}(y) = (x * t) * (y * t)$$

= x * y
= 0.

Therefore, $d_t(x) \le d_t(y)$. This completes proof.

Definition 4.12. Let d_t be a t-derivation of a BCIK-algebra X. Then, d_t is said to be an isotone t-derivation if $x \le y \Rightarrow d_t(x) \le d_t(y)$ for all x, y X.

Example 4.13. In Example 4.9(2), d_t ' is an isotone t-derivation, while in Example 4.9(1), d_t is not an isotone t-derivation.

Proposition 4.14. Let X be a BCIK-algebra and d_t be a t-derivation on X. Then for all x, y X, the following hold:

(1) If $d_t(x \land y) = d_t(x) d_t(x) d_t(x)$, then d_t is an isotone t-derivation

(2) If $d_t(x \land y) = d_t(x) * d_t(y)$, then d_t is an isotone t-derivation.

Proof.

(1) Let $d_t(x \land y) = d_t(x) \land d_t(x)$. If $x \le y \Rightarrow x \land y = x$ for all $x, y \land X$. Therefore, we have $d_t(x) = d_t(x \land y)$

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

$$= d_t(x) \wedge d_t(y) \\ \le d_t(y).$$

Henceforth $d_t(x) \le d_t(y)$ which implies that d_t is an isotone t-derivation.

(2) Let $d_t(x * y) = d_t(x) * d_t(y)$. If $x \le y \Rightarrow x * y = 0$ for all x, y X. Therefore, we have $d_t(x) = d_t(x * 0)$ $= d_t\{x * (x * y)\}$ $= d_t(x) * d_t(x * y)$ $= d_t(x) * \{d_t(x) * d_t(y)\}$ $\le d_t(y)$.

Thus, $d_t(x) \le d_t(y)$. This completes the proof.

Theorem 4.15. Let d_t be a t-regular (r, l)-t-derivation of a BCIK-algebra X. Then, the following hold:

- (1) $d_t(x) \le x$ for all x = X.
- $(2) \ d_t(x) \ast y \leq x \ast d_t(y) \text{ for all } x, y \quad X.$
- (3) $d_t(x * y) = d_t(x) * y \le d_t(x) * d_t(y)$ for all x, y X.
- (4) $\operatorname{Ker}(d_t) = \{ x \quad X : d_t(x) = 0 \}$ is a sub algebra of X.

Proof.

(1) For any x = X,

we have $d_t(x) = d_t(x * 0) = (x * d_t(0)) \land (d_t(x) * 0) = (x * 0) \land (d_t(x) * 0) = x \land d_t(x) \le x$.

- (2) Since $d_t(x) \le x$ for all $x \in X$, then $d_t(x) * y \le x * y \le x * d_t(y)$ and hence the proof follows.
- (3) For any x, y = X, we have

$$\begin{split} d_t(x \, * \, y) &= (x \, * \, d_t(y)) \, \land \, (d_t(x) \, * \, y) \\ &= \{d_t(x) \, * \, y\} \, * \, [\{d_t(x) \, * \, y\} \, * \, \{x \, * \, d_t(x)\}] \\ &= \{d_t(x) \, * \, y\} \, * \, 0 \\ &= d_t(x) \, * \, y \, \le \, d_t(x) \, * \, d_t(x). \end{split}$$

(4) Let x, y ker $(d_t) \Rightarrow d_t(x) = 0 = d_t(y)$. From (3), we have $d_t(x * y) \le d_t(x) * d_t(y) = 0 * 0 = 0$ implying $d_t(x * y) \le 0$ and so $d_t(x * y) = 0$. Therefore, x * y ker (d_t) . Consequently, ker (d_t) is a sub algebra of X. This completes the proof.

Definition 4.16. Let X be a BCIK-algebra and let d_t, d_t' be two self-maps of X. Then we define $d_t \circ d_t' : X \to X$ by $(d_t \circ d_t')(x) = d_t(d_t'(x))$ for all $x \to X$.

Example 4.17. Let $X = \{0, a, b\}$ be a BCIK-algebra which is given in Example 4.4. Let d_t and d_t ' be two

self-maps on X as define in Example 4.9(1) and Example 4.9(2), respectively.

Now, define a self-map $d_t \circ d_t' : X \to X$ by

$$(\mathbf{d}_{t} \circ \mathbf{d}_{t}')(\mathbf{x}) = \begin{cases} 0 \text{ if } x = a, b \\ b \text{ if } x = 0. \end{cases}$$

Then, it easily checked that $(d_t \circ d_t')(x) = d_t(d_t'(x))$ for all x = X.

Proposition 4.18. Let X be a p-semi simple BCIK-algebra X and let d_t , d_t ' be (l, r)-t-derivations of X. Then, d_t o d_t ' is also a (l, r)-t-derivation of X.

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

Proof. Let X be a p-semi simple BCIK-algebra. dt and dt' are (l, r)-t-derivations of X. Then for all x, y X, we get

 $(d_t \circ d_t') (x * y) = d_t(d_t'(x,y))$ $= d_t[(d_t'(x) * y) \land (x * d_t(y))]$

$$= d_t[(x * d_t'(y)) * \{(x * d_t(y)) * (d_t'(x) * y)\}]$$

= $d_t(d_t'(x) * y)$
= $\{x * d_t(d_t'(y))\} * [\{x * d_t(d_t'(y))\} * \{d_t(d_t'(x) * y)\}]$
= $\{d_t(d_t'(x) * y)\} \land \{x * d_t(d_t'(y))\}$

$$= ((d_t \circ d_t')(x) * y) \land (x * (d_t \circ d_t')(y)).$$

Therefore, $(d_t o d_t')$ is a (l, r)-t-derivation of X.

Similarly, we can prove the following.

Proposition 4.19. Let X be a p-semi simple BCIK-algebra and let d_t, d_t ' be (r, l)-t-derivations of X. Then,

 $d_t o d_t$ ' is also a (r, l)-t-derivation of X.

Combining Propositions 3.18 and 3.19, we get the following.

Theorem 4.20. Let X be a p-semi simple BCIK-algebra and let d_t, d_t ' be t-derivations of X. Then, d_t o d_t ' is also a t-derivation of X.

Now, we prove the following theorem

Theorem 4.21. Let X be a p-semi simple BCIK-algebra and let d_t, d_t' be t-derivations of X. Then $d_t \circ d_t' = d_t' \circ d_t$.

Proof. Let X be a p-semi simple BCIK-algebra. d_t and d_t ', t-derivations of X. Suppose d_t ' is a (l, r)-t-derivation, then for all x, y X, we have

 $(d_t \circ d_t') (x * y) = d_t(d_t'(x * y))$ $= d_t[(d_t'(x) * y) \land (x * d_t(y))]$ $= d_t[(x * d_t'(y)) * \{(x * d_t(y)) * (d_t'(x) * y)\}]$ $= d_t(d_t'(x) * y)$ As d_t is a (r, l)-t-derivation, then $= (d_t'(x) * d_t(y)) \land (d_t(d_t'(x)) * y)$ $= d_t'(x) * d_t(y).$ Again, if d_t is a (r, l)-t-derivation, then we have $(d_t o d_t') (x * y) = d_t' [d_t(x * y)]$ $= d_t'[(x * d_t(y)) \land (d_t(x) * y)]$ $= d_t' [x * d_t(y)]$ But d_t is a (1, r)-t-derivation, then $= (d_t'(x) * d_t(y)) \land (x * d_t'(d_t(y)))$ $= d_t'(x) * d_t(y)$ Therefore, we obtain $(d_t \circ d_t') (x * y) = (d_t' \circ d_t) (x * y).$ By putting y = 0, we get $(d_t \circ d_t')(x) = (d_t' \circ d_t)(x)$ for all x Х. Hence, $d_t \circ d_t' = d_t' \circ d_t$. This completes the proof.

Definition 4.22. Let X be a BCIK-algebra and let d_t, d_t ' two self-maps of X. Then we define $d_t * d_t' : X \rightarrow X$ by $(d_t * d_t')(x) = d_t(x) * d_t'(x)$ for all x X.

Example 4.23. Let $X = \{0, a, b\}$ be a BCIK-algebra which is given in Example 3.4. let d_t and d_t ' be two Self-maps on X as defined in Example 4.9 (1) and Example 4.10 (2), respectively.

Now, define a self-map $d_t * d_t' : X \to X$ by

$$(\mathbf{d}_{\mathsf{t}} * \mathbf{d}_{\mathsf{t}}')(\mathbf{x}) = \begin{cases} 0 \text{ if } x = a, b \\ b \text{ if } x = 0. \end{cases}$$

Then, it is easily checked that $(d_t * d_t')(x) = d_t(x) * d_t'(x)$ for all x = X.

Theorem 4.24. Let X be a p-semi simple BCIK-algebra and let d_t, d_t' be t-derivations of X. Then $d_t * d_t' = d_t' * d_t$.

Proof. Let X be a p-semi simple BCIK-algebra. d_t and d_t ', t-derivations of X. Since d_t ' is a (r, l)-t-derivation of X, then for all x, y X, we have

$$(d_t \circ d_t') (x * y) = d_t(d_t'(x * y)) = d_t[(x * d_t'(y)) \land (d_t'(x) * y)] = d_t[(x * d_t'(y)] votion of$$

But d_t is a (l, r)-r-derivation, so

$$= (d_t(x) * d_t'(y)) \land (x * d_t(d_t'(y)) = d_t(x) * d_t'(x).$$

Again, if d_t ' is a (l, r)-t-derivation of X, then for all x, y X, we have $(d_t \circ d_t') (x * y) = d_t[d_t'(x * y)]$

 $= d_t[(d_t'(x) * y) \land (x * d_t'(y))]$ $= d_t[(x * d_t'(y)) * \{(x * d_t'(y)) * (d_t'(x) * y)\}]$ $= d_t(d_t'(x) * y).$

As d_t is a (r, l)-t-derivation, then

 $= (d_t'(x) * d_t(y)) \land (d_t(d_t'(x)) * y)$ $= d_t'(x) * d_t(y).$

Henceforth, we conclude

$$d_t(x) * d_t'(y) = d_t'(x) * d_t(y)$$

By putting y =x, we get

Hence

$$d_{t}(x) * d_{t}'(x) = d_{t}'(x) * d_{t}(x)$$

(d_t * d_t') (x) = (d_t' * d_t)(x) for all x X.
d_t * d_t' = d_t' * d_t. This completes the proof.

5. f-derivation of BCIK-algebra

In what follows, let be an endomorphism of X unless otherwise specified.

Definition 5.1. Let X be a BCIK algebra. By a left f-derivation (briefly, (l, r)-f-derivation) of X, a self-map $d_f(x * y) = (d_f(x) * f(y)) \land (f(x) * d_f(y))$ for all x, y X is meant, where f is an endomorphism of

X. If d_f satisfies the identity $d_f(x * y) = (f(x) * d_f(y)) \land (d_f(x) * f(y))$ for all x, y X, then it is said that d_f is a right-left f-derivation (briefly, (r, l)-f-derivation) of X. Moreover, if d_f is both an (r, l)-f-derivation, it is said that d_f is an f-derivation.

Example 5.2. Let $X = \{0,1,2,3,4,5\}$ be a BCIK-algebra with the following Cayley table:

*	0	1	2	3	4	5
0	0	0	2	2	2	2
1	1	0	2	2	2	2
2	2	2	0	0	0	0
3	3	2	1	0	0	0
4	4	2	1	1	0	1
5	5	2	1	1	1	0

Define a Map $d_f : X \to X$ by

$$\mathbf{d}_{\mathrm{f}} = \begin{cases} 2 \, if \quad x = 0, 1, \\ 0 \, otherwise \end{cases}$$

and define and endomorphism f of X by

$$f(\mathbf{x}) = \begin{cases} 2if \ x = 0, 1, \\ 0 \ otherwise, \end{cases}$$

That it is easily checked that d_f is both derivation and f-derivation of X.

Example 5.3. Let X be a BCIK-algebra as in Example 2.2. Define a map $d_f: X \to X$ by

$$d_{f} = \begin{cases} 2if \ x = 0, 1, \\ 0 \ otherwise, \end{cases}$$

Then it is easily checked that d_f is a derivation of X.

Define an endomorphism f of X by f(x) = 0, for all x X.

Then d_f is not an f-derivation of X since

$$d_f (2 * 3) = d_f (0) = 2,$$

but

$$(d_f(2) * f(3)) \land (f(2) * d_f(3)) = (0 * 0) \land (0 * 0) = 0 \land 0 = 0,$$

And thus $d_f(2 * 3) \neq (d_f(2) * f(3)) \land (f(2) * d_f(3)).$

Remark 5.4. From Example 5.3, we know that there is a derivation of X which is not an f-derivation X. **Example 2.5.** Let $X = \{0,1,2,3,4,5\}$ be a BCIK-algebra with the following Cayley table:

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

*	0	1	2	3	4	5
0	0	0	3	2	3	2
1	1	1	5	4	3	2
2	2	2	0	3	0	3
3	3	3	2	0	2	0
4	4	2	1	5	0	3
5	5	3	4	1	2	0

Define a map $d_f: X \to X$ by

$$d_{f}(x) = \begin{cases} 0 \ if \ x = 0, 1, \\ 2 \ if \ x = 2, 4, \\ 3 \ if \ x = 3, 5, \end{cases}$$

and define an endomorphism f of X by

$$f(x) = \begin{cases} 0 \ if \ x = 0, 1, \\ 2 \ if \ x = 2, 4, \\ 3 \ if \ x = 3, 5, \end{cases}$$

Then it is easily checked that d_f is both derivation and f-derivation of X.

Example 5.6. Let X be a BCIK-algebra as in Example 5.5. Define a map $d_f: X \to X$ by

$$d_{f}(x) = \begin{cases} 0 \ if \ x = 0, 1, \\ 2 \ if \ x = 2, 4, \\ 3 \ if \ x = 3, 5, \end{cases}$$

Then it is easily checked that d_f is a derivation of X.

Define an endomorphism f of X by

f(0) = 0, f(1) = 1, f(2) = 3 f(3) = 2, f(4) = 5, f(5) = 4. Then d_f is not an f-derivation of X since $d_f(2 * 3) = d_f(3) = 3$,

but

$$\begin{array}{ll} (d_f\,(2)\,^*\,f(3))\,\wedge\,\,(f(2)\,^*\,d_f\,(3))=(2\,^*\,2\,\,)\,\wedge\,\,(3\,^*\,3)=0\,\,\wedge\,\,0=0,\\ \text{And thus} & d_f\,(2\,^*\,3)\,\neq\,(d_f\,(2)\,^*\,f(3))\,\,\wedge\,\,(f(2)\,^*\,d_f\,(3)). \end{array}$$

Example 5.7. Let X be a BCIK-algebra as in Example 2.5. Define a map $d_f : X \rightarrow X$ by $d_f(0) = 0$, $d_f(1) = 1$, $d_f(2) = 3$, $d_f(3) = 2$, $d_f(4) = 5$, $d_f(5) = 4$,

Then d_f is not a derivation of X since

 $\begin{array}{l} d_f\left(2\ *\ 3\right)=d_f\left(3\right)=2,\\ (d_f\left(2\right)\ *\ 3\right)\ \land\ (2\ *\ d_f\left(3\right))=(3\ *\ 3\)\ \land\ (2\ *\ 2)=0\ \land\ 0=0,\\ \end{array}$ And thus And thus $d_f\left(2\ *\ 3\right)\ \neq\ (d_f\left(2\right)\ *\ 3)\ \land\ (2\ *\ d_f\left(3\right)).\\ \end{array}$ Define an endomorphism f of X by $f\left(0\right)=0,\ f\left(1\right)=1,\ f\left(2\right)=3,\ f\left(3\right)=2,\ f\left(4\right)=5,\ f\left(5\right)=4. \end{array}$

Then it is easily checked that d_f is an f-derivation of X.

Remark 5.8. From Example 5.7, we know there is an f-derivation of X which is not a derivation of X. For convenience, we denote $f_x = 0 * (0 * f(x))$ for all x X. Note that $f_x = L_p(X)$.

Theorem 5.9. Let d_f be a self-map of a BCIK-algebra X define by $d_f(x) = f_x$ for all $x \in X$. Then d_f is an (l, r)-f-derivation of X. Moreover, if X is commutative, then d_f is an (r, l)-f-derivation of X.

Proof. Let x, y X Since $0 * (0* (f_x * f(y))) = 0 * (0 * ((0 * (0 * f(x)) * f(y))))$ = 0 * ((0 * ((0 * f(y)) * (0 * f(x))))) = 0 * (0 * (0 * f(y)) * (0 * f(x)))) = 0 * (f(y) * f(x)) = 0 * f(y) * (0 * f(x)) $= (0 * (0 * f(x))) * f(y) = f_x * f(y),$ We have $f_x * f(y)$ L_p(X), and thus $f_x * f(y) = (f(x) * f_y) * ((f(x) * f_y) * (f_x * f(y))),$ It follows that $d_f (x * x) = f_{x * x} = 0 * (0 * f(x*y)) = 0 * (0 * (f(x) * f(y)))$ $= (0 * (0 * f(x)) * (0 * (0 * f(y))) = f_x * f_y$ $= (0 * (0 * f_x)) * (0 * (0 * f(y))) = 0 * (0 * (f_x * f(y))))$ $= f_x * f(y) = (f(x) * f_y) * ((f(x) * f_y) * (f_x * f(y)))$ $= (f_x * f(y)) \land (f(x) \land f_y) = (d_f (x) * f(y)) \land (f(x) * d_f (y)),$

And so d_f is an (l, r)-f-derivation of X. Now, assume that X is commutative. So $d_f(x) * f(y)$ and $f(x) * d_f(y)$ belong to the same branch x, y X, we have

$$\begin{aligned} d_{f}(x) * f(y) &= f_{x} * f(y) = (0 * (f_{x} * f(y))) \\ &= (0 * (0 * f_{x})) * (0 * (0 * f(y))) \\ &= f_{x} * f_{x} \quad V (f_{x} * f_{x}), \end{aligned}$$

And so $f_x * f_x = (0 * (0 * f(x))) * (0 * (0 * f_y)) = 0 * (0 * (f(x) * f_y)) = 0 * (0 * (f(x) * d_f(y)) \le f(x) * d_f(y))$ (y), which implies that $f(x) * d_f(y) = V(f_x * f_x)$. Hence, $d_f(y) * f(y)$ and $f(x) * d_f(y)$ belong to the same branch, and so

$$\begin{array}{l} d_{f}\left(x \, \ast \, x\right) = \left(d_{f}\left(x\right) \, \ast \, f(y)\right) \, \land \, \left(f(x) \, \ast \, d_{f}\left(y\right)\right) \\ = \left(f(x) \, \ast \, d_{f}\left(y\right)\right) \, \land \, \left(d_{f}\left(x\right) \, \ast \, f(y)\right). \end{array}$$

This completes the proof.

Proposition 5.10. Let d_f be a self-map of a BCIK-algebra. Then the following hold.

- (1) If d_f is an (l, r)-f-derivation of X, then $d_f(x) = d_f(x) \wedge f(x)$ for all x X.
- (2) If d_f is an (r, l)-f-derivation of X, then $d_f(x) = f(x) \wedge d_f(x)$ for all x X if and only if $d_f(0) = 0$.

Proof.

(1) Let d_f is an (r, l)-f-derivation of X, Then,

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

$$\begin{split} d_f\left(x\right) &= d_f\left(x \, \ast \, 0\right) = (d_f\left(x\right) \, \ast \, f(0)) \, \land \, \left(f(x) \, \ast \, d_f\left(0\right)\right) \\ &= (d_f\left(x\right) \, \ast \, 0) \, \land \, \left(f(x) \, \ast \, d_f\left(0\right)\right) = d_f\left(x\right) \, \land \, \left(f(x) \, \ast \, d_f\left(0\right)\right) \\ &= (f(x) \, \ast \, d_f\left(0\right)) \, \ast \left((f(x) \, \ast \, d_f\left(0\right)\right) \, \ast \, d_f\left(x\right)) \\ &= (f(x) \, \ast \, d_f\left(0\right)) \, \ast \left((f(x) \, \ast \, d_f\left(0\right)\right) \, \ast \, d_f\left(0\right)) \\ &\leq f(x) \, \ast \, \left(f(x) \, \ast \, d_f\left(x\right)\right) = d_f\left(x\right) \, \land \, f(x). \end{split}$$

But $d_f(x) \wedge f(x) \le d_f(x)$ is trivial and so (1) holds. (2) Let d_f be an (r, 1)-f-derivation of X. If $d_f(x) = f(x) * d_f(x)$ for all x X, then for x = 0, $d_f(0) = f(0) * d_f(0) = 0 \wedge f(0) = d_f(0) * (d_f(0) * 0) = 0$. Conversely, if $d_f(0) = 0$, then $d_f(x) = d_f(x * 0) = (f(x) * (d_f(0)) \wedge (d_f(x) * f(0)) =$

 $(f(x) * 0)) \land (d_f(x) * 0) = f(x) \land d_f(x)$, ending the proof.

Proposition 5.11. Let d_f be an (l, r)-f-derivation of a BCIK-algebra X. Then,

(1) $d_f(x) = L_p(X)$, then is $d_f(0) = 0 * (0 * d_f(x))$; (2) $d_f(a) = d_f(0) * (0 * f(a)) = d_f(0) + f(a)$ for all $a = L_p(X)$; (3) $d_f(a) = L_p(X)$ for all $a = L_p(X)$; (4) $d_f(a) = L_p(X) + d_p(A)$ for all $a = L_p(X)$;

(4) $d_f(a + b) = d_f(a) + d_f(b) - d_f(0)$ for all $a, b = L_p(X)$.

Proof.

(1) The proof follows from Proposition 5.10(1).

(2) Let a $L_{p}(X)$, then a = 0 * (0 * a), and so f(a) = 0 * (0 * f(a)), that is, $f(b) = L_{p}(X)$. Hence

d

$$\begin{split} d_{f}(a) &= d_{f}(0 * (0 * a)) \\ &= (d_{f}(0) * f(0 * a)) \land (f(0) * d_{f}(0 * a)) \\ &= (d_{f}(0) * f(0 * a)) \land (0 * d_{f}(0 * a)) \\ &= (0 * d_{f}(0 * a)) * ((0 * d_{f}(0 * a)) * (d_{f}(0) * f(0 * a))) \\ &= (0 * d_{f}(0 * a)) * ((0 * (d_{f}(0) * f(0 * a))) * d_{f}(0 * a))) \\ &= 0 * (0 * (d_{f}(0) * (0 * f(a)))) \\ &= d_{f}(0) * (0 * f(a)) = d_{f}(0) + f(a). \end{split}$$

(3) The proof follows directly from (2).

(4) Let a, b $L_p(X)$. Note that $a + b = L_p(X)$, so from (2), we note that $d_f(a + b) = d_f(0) + f(a) + d_f(0) + f(b) - d_f(0) = d_f(a) + d_f(0) - d_f(0)$.

Proposition 5.12. Let d_f be a (r, l)-f-derivation of a BCIK-algebra X. Then,

 $\begin{array}{ll} (1) \ d_{f} (a) & G(X) \ for \ all \ a & G(X); \\ (2) \ d_{f} (a) & L_{p}(X) \ for \ all \ a & G(X); \\ (3) \ d_{f} (a) = f(a) \ ^{*} \ d_{f} (0) = f(a) \ ^{+} \ d_{f} (a) \ for \ all \ a, \ b & L_{p}(X); \\ (4) \ d_{f} (a \ ^{+} b) = d_{f} (a) \ ^{+} \ d_{f} (b) \ ^{-} \ d_{f} (0) \ for \ all \ a, \ b & L_{p}(X). \end{array}$

Proof.

 $\begin{array}{ll} (1) \mbox{ For any } a & G(X), \mbox{ we have } d_f \ (a) = d_f \ (0 \ ^* \ a) = (f(0) \ ^* \ d_f \ (a)) \ \land \ (d_f(0) + f(a)) \\ = (d_f(0) + f(a)) \ ^* \ ((d_f(0) + f(a)) \ ^* \ (0 \ ^* \ d_f(0))) = 0 \ ^* \ d_f(0), \mbox{ and so } d_f(a) \ ^- \ G(X). \\ (2) \mbox{ For any } a & L_p(X), \mbox{ we get} \\ d_f \ (a) = d_f \ (0 \ ^* \ (0 \ ^* \ a)) = (0 \ ^* \ d_f \ (0 \ ^* \ a)) \ \land \ (d_f(0) \ ^* \ f(0 \ ^* \ a)) \\ = (d_f(0) \ ^* \ f(0 \ ^* \ a)) \ ^* \ ((d_f(0) \ ^* \ f(0 \ ^* \ a))) \\ = 0 \ ^* \ d_f(0 \ ^* \ a) \ L_p(X). \end{array}$

(3) For any a $L_p(X)$, we get $d_f(a) = d_f(a * 0) = (f(a) * d_f(0)) \land (d_f(a) * f(0))$ $= d_f(a) * (d_f(a) * (f(a) * d_f(0))) = f(a) * d_f(0)$ $= f(a) * (o * d_f(0)) = f(a) + d_f(a).$

(4) The proof from (3). This completes the proof.

Using Proposition 5.12, we know there is an (l,r)-f-derivation which is not an (r,l)-f-derivation as shown in the following example.

Example 5.13. Let Z be the set of all integers and "-" the minus operation on Z. Then (Z, -, 0) is a BCIK-algebra. Let $d_f : X \to X$ be defined by $d_f(x) = f(x) - 1$ for all $x \in Z$. Then,

$$\begin{array}{l} (d_f\left(x\right)-f(y))\,\wedge\,\,(f(x)\text{ - }d_f\left(y\right))=(f(x)-1-f(y))\,\wedge\,\,(f(x)-(f(y)-1))\\ &=(f(x-Y)-1)\,\,\wedge\,\,(f(x-y)+1)\\ &=(f(x-Y)+1)-2=f(x-Y)-1\\ &=d_f\left(x\text{ - }y\right). \end{array}$$

Hence, d_f is an (l, r)-f-derivation of X. But $d_f(0) = f(0) - 1 = -1$ $1 = f(0) - d_f(0) = 0 - d_f(0)$, that is, $d_f(0) \notin G(X)$. Therefore, d_f is not an (r, l)-f-derivation of X by Proposition 2.12(1).

6. Regular f-derivations

Definition 6.1. An f-derivation d_f of a BCIK-algebra X is said to be a regular if $d_f(0) = 0$

Remark 6.2. we know that the f-derivations d_f in Example 5.5 and 5.7 are regular.

Proposition 6.3. Let X be a commutative BCIK-algebra and let d_f be a regular (r, l)-f-derivation of X. Then the following hold.

(1) Both f(x) and $d_f(x)$ belong to the same branch for all x X.

(2) d_f is an (l, r)-f-derivation of X.

Proof.

(1) Let x X. Then, $0 = d_{f}(0) = d_{f}(a_{x} * x)$ $= (f(a_{x}) * d_{f}(x)) \land (d_{f}(a_{x}) * f(x))$ $= (d_{f}(a_{x}) * f(x)) * ((d_{f}(a_{x}) * f(x)) * (f(x) * d_{f}(a_{x})))$ $= (d_{f}(a_{x}) * f(x)) * ((d_{f}(a_{x}) * f(x)) * (f(x) * d_{f}(a_{x})))$ $= f_{x} * d_{f}(a_{x}) \text{ since } f_{x} * d_{f}(a_{x}) L_{p}(X),$ And so $f_{x} \leq d_{f}(x)$. This shows that $d_{f}(x) V(X)$, Clearly, f(x) V(X). (2) By (1), we have $f(x) * d_{f}(y) V(f_{x} * f_{y})$ and $d_{f}(x) * f(y) V(f_{x} * f_{y})$. Thus

 $d_f(x * y) = (f(x) * d_f(y)) \land (d_f(x) * f(y)) = (d_f(x) * f(y)) \land (f(x) * d_f(y)),$ which implies that d_f is an (l, r)-f-derivation of X.

Remark 6.4. The f-derivations d_f in Examples 5.5 and 5.7 are regular f-derivations but we know that the (l, r)-f-derivation d_f in Example 5.2 is not regular. In the following, we give some properties of regular f-derivations.

Definition 6.5. Let X be a BCIK-algebra. Then define ker $d_f = \{x | X / d_f(x) = 0 \text{ for all } f\text{-derivations } d_f\}.$

Proposition 6.6. Let d_f be an f-derivation of a BCIK-algebra X. Then the following hold: (1) $d_f(x) \le f(x)$ for all x = X;

International Journal of Multidisciplinary Research Review, Vol.7, Issue-3, March-2021, Page - 54

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

 $\begin{array}{l} (2) \ d_{f}\left(x\right)*f(y) \leq f(x)*d_{f}\left(y\right) \ for \ all \ x, y \quad X; \\ (3) \ d_{f}\left(x*y\right) = d_{f}\left(x\right)*f(y) \leq d_{f}\left(x\right)*d_{f}\left(y\right) \ for \ all \ x, y \quad X; \\ (4) \ ker \ d_{f} \ is \ a \ sub \ algebra \ of \ X. \ Especially, \ if \ f \ is \ monic, \ then \ ker \ d_{f} \ \subseteq \ X_{+}. \end{array}$ $\begin{array}{l} \textbf{Proof.} \\ (1) \ The \ proof \ follows \ by \ Proposition \ 5.10(2). \\ (2) \ Since \ d_{f}\left(x\right) \leq f(x) \ for \ all \ x \quad X, \ then \ d_{f}\left(x\right)*f(y) \leq f(x)*f(y) \leq f(x)*d_{f}\left(y\right). \\ (3) \ For \ any \ x, \ y \quad X, \ we \ have \\ d_{f}\left(x*y\right) = (f(x)*d_{f}\left(y\right)) \ \land \ (d_{f}\left(x\right)*f(y)) \\ = (d_{f}\left(x\right)*f(y)) \ \land \ (d_{f}\left(x\right)*f(y)) \ f(x)*d_{f}\left(y\right))) \\ = (d_{f}\left(x\right)*f(y)) \ \ast \ 0 = d_{f}\left(x\right)*f(y) \leq d_{f}\left(x\right)*d_{f}\left(y\right), \end{array}$

Which proves (3).

(4) Let x, y ker d_f, then d_f (x) = 0 = d_f (y), and so d_f (x * y) \leq d_f (x) * d_f (y) = 0 * 0 = 0 by (3), and thus d_f (x * y) = 0, that is, x * y ker d_f, then 0 = d_f (x) \leq f(x) by (1), and so f(x) X₊, that is, 0 * f(x) = 0, and thus f(0 * x) = f(x), which that 0 * x = x, and so x X₊, that is, ker d_f \subseteq X₊.

Theorem 6.7. Let be monic of a commutative BCIK-algebra X. Then X is p-semi simple if and only if ker $d_f = \{0\}$ for every regular f-derivation d_f of X.

Proof.

Assume that X is p-semi simple BCIK-algebra and let d_f be a regular f-derivation of X. Then $X_+ = \{0\}$, and So ker $d_f = \{0\}$ by using Proposition 6.6(4), Conversely, let ker $d_f = \{0\}$ for every regular f-derivation d_f of X. Define a self-map d_f of X by $d_f^*(0) = f_x$ for all x X. Using Theorem 5.9, d_f^* is an f-derivation of X. Clearly, $d_f^*(0) = f_0 = 0 * (0 * f(0)) = 0$, and so d_f^* is a regular f-derivation of X. It follows from the hypothesis that ker $d_f^* = \{0\}$. In addition, $d_f^*(x) = f_x = 0 * (0 * f(x)) = f(0 * (0 * x)) = f(0) = 0$ for all x X_+ , and thus x ker d_f^* . Hence, by Proposition 6.6(4), X_+ ker $d_f^* = \{0\}$. Therefore, X is p-semi simple.

Definition 6.8. An ideal A of a BCIK-algebra X is said to be an f-ideal if $f(A) \subseteq A$.

Definition 6.9. Let d_f be a self-map of a BCIK-algebra X. An f-ideal A of X is said to be d_f –invariant if

 $d_f(a) \subseteq A.$

Theorem 6.10. Let d_f be a regular (r, l)-f-derivation of a BCIK-algebra X, then every f-ideal A of X is $d_f(A) \subseteq A$.

Theorem 6.10. Let d_f be a regular (r, l)-f-derivation of a BCIK-algebra X, then every f-ideal A of X is d_f -invariant.

Proof.

By Proposition 6.10(2), we have $d_f(x) = f(x) \land d_f(x) \le f(x)$ for all x X. Let $y d_f(A)$. Let $y d_f(A)$. Then $y = d_f(x)$ for some x A. It follows that $y * f(x) = d_f(x) * f(x) = 0 A$. Since x A, then $f(x) f(A) \subseteq A$ as A is an f-ideal. It follows that y A since A is an ideal of X. Hence $d_f(A) \subseteq A$, and thus A is d_f – invariant.

Theorem 6.11. Let d_f be an f-derivation of a BCIK-algebra X. Then d_f is regular if and only if every f-ideal of X is d_f -invariant.

Proof. Let d_f be a derivation of a BCIK-algebra X and assume that every f-ideal of X is d_f –invariant. Then

Since the zero ideal {0} is f-ideal and d_f –invariant, we have $d_f(\{0\}) \subseteq \{0\}$, which implies that $d_f(0) = 0$.

Thus d_f is regular. Combining this and Theorem 6.10, we complete the proof.

7. Conclusion

Derivation is a very interesting and are of research in the theory of algebraic structures in mathematics. The theory of derivations of algebraic structures is a direct descendant of the development of classical Galosis theory. In this paper, we have considered the notation of f-derivations in BCIK-algebra and investigated the useful properties of the f-derivations in BCIK-algebra. Finally, we investigated the notion of f-derivations in a p-semisimple BCIK-algebra and established some results on f-derivations in a p-semisimple BCIK-algebra. In our opinion, these definitions and main results can be similarly extended to some other algebraic system such as subtraction algebras, B-algebras, MV-algebras, d-algebras, Q-algebras and so forth.

In our future study of f-derivation I BCIK-algebra, may be the following topics should be considered:

- (1) To find the generalized f-derivations of BCIK-algebra,
- (2) To find more result in f-derivation of BCIK-algebra and its applications,
- (3) To find the f-derivations of B-algebras, Q-algebras, subtraction algebras, d-algebra and so forth.

References

- 1. Y. Imai, K. Iseki, on axiom systems of propositional calculi XIV, proc. Japan Academy, 42 (1966), 19-22.
- 2. K. Iseki, BCK Algebra, Math. Seminar Notes, 4(1976), 77-86.
- 3. Y.B. Jun and X.L. Xin On derivations of BCI algebras, inform. Sci., 159(2004), 167-176.
- 4. S Rethina Kumar, "Solvable Pseudo Commutators BCIK-Algebras', International Journal of Research Publication and Reviews Vol(3), Issue(2)(2021) Page 269-275, March 2021.
- 5. S Rethina Kumar, "t-Regular t-Derivations on p-Semisimple BCIK-Algebras" EPRA International Journal of Multidisciplinary Research. Volume 7, Issue 3, pp.198-209, March 2021.
- 6. M.A. Ozturk, Y. Ceven, and Y.B. Jun, "Generalized derivations of BCI-algbra", Honam Mathematical Journal, vol.31, no4, pp.601-609, 2009.
- N.O. Al-Shehri, "Derivations of B-algebras", Journal of King Abdulaziz University, vol. 22, no. 1, pp.71-83, 2010.
- 8. S. IIbira, A. Firat, and Y.B. Jun, "On symmetric bi-derivations of BCI-algebras", Applied Mathematical Sciences, vol.5, no.57-60, pp.2957-2966, 2011.
- 9. J. Meng and Y.B. Jun, BCK algebra, Kyung Moon Sa Co, Seoul, Korea. 1994.
- 10. S. Tanaka, A new class of algebra, Mathematics Seminar Notes 3 (1975), pp. 37-43.