f-REGULAR f-DERIVATIONS ON p-SEMI SIMPLE BCIK-ALGEBRAS

S. Rethina Kumar
Assistant Professor, Department of Mathematics, Bishop Heber College, Trichy, Tamilnadu. India.

Abstract

Introduced BCIK - algebra and its properties, and also we introduce the notion of derivation of a BCIK-algebra and investigate some related properties. Using the idea of regular f-derivation of a BCIK-algebra and investigate related properties. In this paper, the notion of left-right (resp., right-left) f-derivation of a BCIK-algebra is introduced, and some related properties are investigated. Using regular f-derivation, we give characterizations of a regular f-derivation on p-semi simple BCIKalgebra.

Keywords: BCIK-algebra, p-semi simple, f-derivations, f-regular.

1. Introduction

In 1966, Y. Imai and K. Iseki [1, 2] defined BCK - algebra in this notion originated from two different sources: one of them is based on the set theory the other is form the classical and non - classical propositional calculi. In [3]. Y.B. Jun and X.L. Xin applied the notion of derivation in ring and near ring theory to BCI - algebras, and they also introduced a new concept called a derivation in BCIalgebras and its properties. In 2021 [4], S Rethina Kumar introduce combination BCK-algebra and BCI-algebra to define BCIK-algebra and its properties and also using Lattices theory to derived the some basic definitions, and they also the idea introduced a regular f-derivation in BCIK-algebras. We give the Characterizations f-derivation p-semi simple algebra and its properties. After the work of Jun and Xin (2004) [3], many research articles have appeared on the derivations of BCI-algebras In different aspects as follows: In 2021[5], S Rehina Kumar have given the notion of t-derivation of BCIK-algebras and studied p-semi simple BCIK-algebras by using the idea of regular t-derivation in BCIK-algebras have extended the results of BCIK-algebra in the same paper they defined and studied the notion of left derivation of BCIK-algebra and investigated some properties of left derivation in psemi simple BCIK-algebras. In 2009 [6], Ozturk and Ceven have defined the notion of derivation and generalized derivation determined by a derivation for a complicated subtraction algebra and discussed some related properties. Also, in 2009 [6], Ozturk et al. have introduced the notion of generalized derivation in BCI -algebras and established some results. Further, they have given the idea of torsion free BCI-algebra and explored some properties. In 2010 [7], Al-Shehri has applied the notion of leftright (resp., right-left) derivation in BCI-algebra in BCI-algebra and obtained some of its properties. In 2011[19], Ilbira et al, have studied the notion of left-right (resp., right-left) symmetric bi derivation in BCI-algebras.

Motivated by a lot work done on f-derivations of BCIK-algebra and on derivations of other related abstract algebraic structures, in this paper we introduce the notion of regular f-derivation p-semi simple BCIK-algebras and obtain some of its related properties.

2. Preliminaries

Definition 2.1. [5] BCIK algebra
Let X be a non-empty set with a binary operation * and a constant 0 . Then ($\mathrm{X}, *, 0$) is called a BCIK Algebra, if it satisfies the following axioms for all $x, y, z \quad X$:
$\left(\right.$ BCIK-1) $x^{*} y=0, y^{*} x=0, z^{*} x=0$ this imply that $x=y=z$.
$($ BCIK-2 $)\left(\left(\mathrm{x}^{*} \mathrm{y}\right) *\left(\mathrm{y}^{*} \mathrm{z}\right)\right) *\left(\mathrm{z}^{*} \mathrm{x}\right)=0$.
$(\operatorname{BCIK}-3)(x *(x * y)) * y=0$.
$\left(\right.$ BCIK-4) $x * x=0, y^{*} y=0, z^{*} z=0$.
$\left(\right.$ BCIK-5) $0^{*} \mathrm{x}=0,0^{*} \mathrm{y}=0,0^{*} \mathrm{z}=0$.
For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \quad \mathrm{X}$. An inequality \leq is a partially ordered set on X can be defined $\mathrm{x} \leq \mathrm{y}$ if and only if $(x * y) *(y * z)=0$.

Properties 2.2. [5] I any BCIK - Algebra X, the following properties hold for all $x, y, z \quad X$:
(1) $0 \quad \mathrm{X}$.
(2) $x^{*} 0=x$.
(3) $x * 0=0$ implies $x=0$.
(4) $0 *(x * y)=(0 * x) *(0 * y)$.
(5) $X^{*} y=0$ implies $x=y$.
(6) $X *(0 * y)=y^{*}(0 * x)$.
(7) $0 *(0 * x)=x$.
(8) x * $y \quad X$ and $x \quad X$ imply $y \quad X$.
(9) $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y}$
(10) $x *(x *(x * y))=x * y$.
(11) $(x * y) *(y * z)=x * y$.
(12) $0 \leq x \leq y$ for all $x, y \quad X$.
(13) $\mathrm{x} \leq \mathrm{y}$ implies $\mathrm{x}^{*} \mathrm{z} \leq \mathrm{y}^{*} \mathrm{z}$ and $\mathrm{z}^{*} \mathrm{y} \leq \mathrm{z}^{*} \mathrm{x}$.
(14) $x * y \leq x$.
(15) $x * y \leq z \Leftrightarrow x * z \leq y$ for all $x, y, z \quad X$
(16) $x^{*} \mathrm{a}=\mathrm{x} * \mathrm{~b}$ implies $\mathrm{a}=\mathrm{b}$ where a and b are any natural numbers (i. e)., $\mathrm{a}, \mathrm{b} \quad \mathrm{N}$
(17) $a^{*} x=b^{*} x$ implies $a=b$.
(18) $\mathrm{a}^{*}\left(\mathrm{a}^{*} \mathrm{x}\right)=\mathrm{x}$.

Definition 2.3. [4, 5, 10], Let X be a BCIK - algebra. Then, for all $x, y, z \quad X$:
(1) X is called a positive implicative BCIK - algebra if $\left(\mathrm{x}^{*} \mathrm{y}\right) * \mathrm{z}=\left(\mathrm{x}^{*} \mathrm{z}\right) *\left(\mathrm{y}^{*} \mathrm{z}\right)$.
(2) X is called an implicative BCIK - algebra if $x^{*}\left(y^{*} x\right)=x$.
(3) X is called a commutative BCIK - algebra if $x *(x * y)=y *\left(y^{*} x\right)$.
(4) X is called bounded BCIK - algebra, if there exists the greatest element 1 of X , and for any $\mathrm{x} \quad \mathrm{X}, 1^{*} \mathrm{x}$ is denoted by GG_{x},
(5) X is called involutory BCIK - algebra, if for all $x \quad X, G G_{x}=x$.

Definition 2.4. [5] Let X be a bounded BCIK-algebra. Then for all x , $\mathrm{y} \quad \mathrm{X}$:
(1) G1 $=0$ and G0 $=1$,
(2) $\mathrm{GG}_{\mathrm{x}} \leq \mathrm{x}$ that $\mathrm{GG}_{\mathrm{x}}=\mathrm{G}\left(\mathrm{G}_{\mathrm{x}}\right)$,
(3) $G_{x} * G_{y} \leq y * x$,
(4) $y \leq x$ implies $G_{x} \leq G_{y}$,
(5) $\mathrm{G}_{x * y}=\mathrm{G}_{\mathrm{y} * \mathrm{x}}$
(6) $\mathrm{GGG}_{\mathrm{x}}=\mathrm{G}_{\mathrm{x}}$.

Theorem 2.5. [5] Let X be a bounded BCIK-algebra. Then for any x , $\mathrm{y} \quad \mathrm{X}$, the following hold:
(1) X is involutory,
(2) $x * y=G_{y} * G_{x}$,
(3) $x * G_{y}=y * G_{x}$,
(4) $x \leq G_{y}$ implies $y \leq G_{x}$.

Theorem 2.6. [5] Every implicative BCIK-algebra is a commutative and positive implicative BCIKalgebra.

Definition 2.7. [4,5] Let X be a BCIK-algebra. Then:
(1) X is said to have bounded commutative, if for any $x, y \quad X$, the set $A(x, y)=\left\{t \quad X: t^{*} x \leq y\right\}$ has the greatest element which is denoted by x o y,
(2) $\left(X,{ }^{*}, \unlhd\right)$ is called a BCIK-lattices, if (X, \leftrightarrows) is a lattice, where \leq is the partial BCIK-order on X, which has been introduced in Definition 2.1.

Definition 2.8. [5] Let X be a BCIK-algebra with bounded commutative. Then for all $x, y, z \quad X$:
(1) $\mathrm{y} \leq \mathrm{x} \mathrm{o}\left(\mathrm{y}^{*} \mathrm{x}\right)$,
(2) $(x$ o z) $*(y$ o z) $\leq x * y$,
(3) $(x * y) * z=x *(y ~ o z)$,
(4) If $x \leq y$, then x o $z \leq y o z$,
(5) $z^{*} x \leq y \Leftrightarrow z \leq x$ o y.

Theorem 2.9. [4,5] Let X be a BCIK-algebra with condition bounded commutative. Then, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \quad \mathrm{X}$, the following are equivalent:
(1) X is a positive implicative,
(2) $\mathrm{x} \leq \mathrm{y}$ implies x o $\mathrm{y}=\mathrm{y}$,
(3) x o $x=x$,
(4) $(\mathrm{x}$ o y$) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) \circ(\mathrm{y} * \mathrm{z})$,
(5) x o $\mathrm{y}=\mathrm{x}$ o ($\left.\mathrm{y}^{*} \mathrm{x}\right)$.

Theorem 2.10. [4,5] Let X be a BCIK-algebra.
(1) If X is a finite positive implicative BCIK-algebra with bounded and commutative the $(\mathrm{X}, \leftrightarrows$ is a distributive lattice,
(2) If X is a BCIK-algebra with bounded and commutative, then X is positive implicative if and only if (X, \triangleleft) is an upper semi lattice with $x \quad y=x$ o y, for any $x, y \quad X$,
(3) If X is bounded commutative BCIK-algebra, then BCIK-lattice (X, \unlhd) is a distributive lattice, where $x \quad y=y^{*}\left(y^{*} x\right)$ and $x \quad y=G\left(G_{x} \quad G_{y}\right)$.

Theorem 2.11. $[4,5]$ Let X be an involutory BCIK-algebra, Then the following are equivalent:
(1) (X, \leftrightarrows) is a lower semi lattice,
(2) (X, \Im) is an upper semi lattice,
(3) (X, \Im) is a lattice.

Theorem 2.12. [5] Let X be a bounded BCIK-algebra. Then:
(1) every commutative BCIK-algebra is an involutory BCIK-algebra.
(2) Any implicative BCIK-algebra is a Boolean lattice (a complemented distributive lattice).

Theorem 2.13. [5, 11] Let X be a BCK-algebra, Then, for all $x, y, z \quad X$, the following are equivalent:
(1) X is commutative,
(2) $x^{*} y=x *\left(y^{*}\left(y^{*} x\right)\right)$,
(3) $x *(x * y)=y^{*}\left(y^{*}\left(x^{*}\left(x^{*} y\right)\right)\right)$,
(4) $x \leq y$ implies $x=y^{*}\left(y^{*} x\right)$.

3. Regular Left derivation p-semi simple BCIK-algebra

Definition 3.1. Let X be a p-semi simple BCIK-algebra. We define addition + as $\mathrm{x}+\mathrm{y}=\mathrm{x}^{*}\left(0^{*} \mathrm{y}\right)$ for all $x, y \quad X$. Then $(X,+)$ be an abelian group with identity 0 and $x-y=x^{*} y$. Conversely, let $(X,+)$ be an abelian group with identity 0 and let $x-y=x * y$. Then X is a p-semi simple BCIK-algebra and $x+y=$ $\mathrm{x} *\left(0^{*} \mathrm{y}\right)$,
for all $x, y \quad X\left(\right.$ see [6]). We denote $x \quad y=y *(y * x), 0 *(0 * x)=a_{x}$ and
$L_{p}(X)=\{a \quad X / x * a=0$ implies $x=a$, for all $x \quad X\}$.
For any $x \quad X . V(a)=\left\{\begin{array}{ll}a & X / x * a=0\end{array}\right\}$ is called the branch of X with respect to a. We have $x * y \quad V(a * b)$, whenever $x \quad V(a)$ and $y \quad V(b)$, for all $x, y \quad X$ and all $a, b \quad L_{p}(X)$, for $0 *(0 *$ $\left.a_{x}\right)=a_{x}$ which implies that $a_{x} * y \quad L_{p}(X)$ for all $y \quad X$. It is clear that $G(X) \subset L_{p}(X)$ and $x *(x * a)=$ a and
$\mathrm{a} * \mathrm{x} \quad \mathrm{L}_{\mathrm{p}}(\mathrm{X})$, for all a $\mathrm{L}_{\mathrm{p}}(\mathrm{X})$ and all $\mathrm{x} \quad \mathrm{X}$.
Definition 3.2. ([5]) Let X be a BCIK-algebra. By a (l, r)-derivation of X, we mean a self d of X satisfying the identity

$$
d(x * y)=(d(x) * y) \wedge(x * d(y)) \text { for all } x, y \quad X
$$

If X satisfies the identity

$$
d(x * y)=(x * d(y)) \wedge(d(x) * y) \text { for all } x, y \quad X
$$

then we say that d is a (r, l)-derivation of X
Moreover, if d is both a (r, l)-derivation and (r, l)-derivation of X, we say that d is a derivation of X.

Definition 3.3. ([5]) A self-map d of a BCIK-algebra X is said to be regular if $d(0)=0$.
Definition 3.4. ([5]) Let d be a self-map of a BCIK-algebra X. An ideal A of X is said to be d-invariant, if $d(A)=A$.
In this section, we define the left derivations

Definition 3.5. Let X be a BCIK-algebra By a left derivation of X, we mean a self-map D of X satisfying

$$
D(x * y)=(x * D(y)) \wedge(y * D(x)), \text { for all } x, y \quad X
$$

Example 3.6. Let $\mathrm{X}=\{0,1,2\}$ be a BCIK-algebra with Cayley table defined by

$*$	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

Define a map D: $\mathrm{X} \rightarrow \mathrm{X}$ by

$$
\mathrm{D}(\mathrm{x})=\left\{\begin{array}{c}
2 i f x=0,1 \\
0 i f x=2
\end{array}\right.
$$

Then it is easily checked that D is a left derivation of X .
Proposition 3.7. Let D be a left derivation of a BCIK-algebra X. Then for all $x, y \quad X$, we have
(1) $x * D(x)=y * D(y)$.
(2) $D(x)=a_{D(x)} x$.
(3) $\mathrm{D}(\mathrm{x})=\mathrm{D}(\mathrm{x}) \wedge \mathrm{x}$.
(4) $\mathrm{D}(\mathrm{x}) \quad \mathrm{L}_{\mathrm{p}}(\mathrm{X})$.

Proof.

(1) Let $x, y \quad X$. Then

$$
\mathrm{D}(0)=\mathrm{D}(\mathrm{x} * \mathrm{x})=(\mathrm{x} * \mathrm{D}(\mathrm{x})) \wedge(\mathrm{x} * \mathrm{D}(\mathrm{x}))=\mathrm{x} * \mathrm{D}(\mathrm{x})
$$

Similarly, $D(0)=y * D(y)$. So, $D(x)=y * D(y)$.
2) Let $x \quad X$. Then
$\mathrm{D}(\mathrm{x})=\mathrm{D}(\mathrm{x} * 0)$

$$
\begin{aligned}
& =(x * D(0)) \wedge(0 * D(x)) \\
& =(0 * D(x)) *((0 * D(x)) *(x * D(0))) \\
& \leq 0 *(0 *(x * D(x)))) \\
& =0 *(0 *(x *(x * D(x)))) \\
& \quad=0 *(0 *(D(x) \wedge x)) \\
& \quad=a_{D(x)} x .
\end{aligned}
$$

Thus $\quad D(x) \leq a_{D(x)}$. But

$$
a_{D(x)}=0(0 *(D(x) \wedge x)) \leq D(x) \wedge x \leq D(x) .
$$

Therefore, $D(x)=a_{D(x)} x$.
(3) Let $\mathrm{x} \quad \mathrm{X}$. Then using (2), we have

$$
\mathrm{D}(\mathrm{x})=\mathrm{a}_{\mathrm{D}(\mathrm{x}) \mathrm{x}} \leq \mathrm{D}(\mathrm{x}) \wedge \mathrm{x} .
$$

But we know that $\mathrm{D}(\mathrm{x}) \wedge \mathrm{x} \leq \mathrm{D}(\mathrm{x})$, and hence (3) holds.
(4) Since $a_{x} \quad L_{p}(X)$, for all $x \quad X$, we get $D(x) \quad L_{p}(X)$ by (2).

Remark 3.8. Proposition 3.3(4) implies that $D(X)$ is a subset of $L_{p}(X)$.
Proposition 3.9. Let D be a left derivation of a BCIK-algebra X. Then for all $x, y \quad X$, we have
(1) $\mathrm{Y}^{*}(\mathrm{y} * \mathrm{D}(\mathrm{x}))=\mathrm{D}(\mathrm{x})$.
(2) $\mathrm{D}(\mathrm{x}) * \mathrm{y} \quad \mathrm{L}_{\mathrm{p}}(\mathrm{X})$.

Proposition 3.10. Let D be a left derivation of a BCIK-algebra of a BCIK-algebra X . Then
(1) $\mathrm{D}(0) \quad \mathrm{L}_{\mathrm{p}}(\mathrm{X})$.
(2) $D(x)=0+D(x)$, for all $x \quad X$.
(3) $D(x+y)=x+D(y)$, for all $x, y \quad L_{p}(X)$.
(4) $D(x)=x$, for all $x \quad X$ if and only if $D(0)=0$.
(5) $D(x) \quad G(X)$, for all $x \quad G(X)$.

Proof.

(1) Follows by Proposition 3.3(4).
(2) Let $\mathrm{x} \quad$ X. From Proposition 3.3(4), we get $D(x)=a_{D(x)}$, so we have

$$
\begin{aligned}
& \mathrm{D}(\mathrm{x})=\mathrm{a}_{\mathrm{D}(\mathrm{x})}=0 *(0 * \mathrm{D}(\mathrm{x}))=0+\mathrm{D}(\mathrm{x}) \\
&(3) \text { Let } \\
& \mathrm{D}(\mathrm{x}+\mathrm{y})=\mathrm{D}(\mathrm{x} *(0 * \mathrm{~L}(\mathrm{X}) . \text { Then } \\
&=(\mathrm{x} * \mathrm{D}(0 * \mathrm{y})) \wedge((0 * \mathrm{y}) * \mathrm{D}(\mathrm{x})) \\
&=((0 * \mathrm{y}) * \mathrm{D}(\mathrm{x})) *(((0 * \mathrm{y}) * \mathrm{D}(\mathrm{x}) *(\mathrm{x} * \mathrm{D}(0 * \mathrm{y}))) \\
&=\mathrm{x} * \mathrm{D}(0 * \mathrm{y}) \\
&=\mathrm{x} *((0 * \mathrm{D}(\mathrm{y})) \wedge(\mathrm{y} * \mathrm{D}(0))) \\
&=\mathrm{x} * \mathrm{D}(0 * \mathrm{y}) \\
&=\mathrm{x} *(0 * \mathrm{D}(\mathrm{y})) \\
&=\mathrm{x}+\mathrm{D}(\mathrm{y}) .
\end{aligned}
$$

(4) Let $\mathrm{D}(0)=0$ and $\mathrm{x} \quad \mathrm{X}$. Then
$\mathrm{D}(\mathrm{x})=\mathrm{D}(\mathrm{x}) \wedge \mathrm{x}=\mathrm{x} *(\mathrm{x} * \mathrm{D}(\mathrm{x}))=\mathrm{x} * \mathrm{D}(0)=\mathrm{x} * 0=\mathrm{x}$.
Conversely, let $D(x)=x$, for all $x \quad X$. So it is clear that $D(0)=0$.
(5) Let $x \quad G(x)$. Then $0 *=x$ and so
$\mathrm{D}(\mathrm{x})=\mathrm{D}(0$ * x$)$
$=(0 * D(x)) \wedge(x * D(0))$
$=(\mathrm{x} * \mathrm{D}(0)) *((\mathrm{x} * \mathrm{D}(0)) *(0 * \mathrm{D}(\mathrm{x}))$
$=0$ * $\mathrm{D}(\mathrm{x})$.
This give $D(x) \quad G(X)$.
Remark 3.11. Proposition 3.6(4) shows that a regular left derivation of a BCIK-algebra is the identity map. So we have the following:
Proposition 3.12. A regular left derivation of a BCIK-algebra is trivial.
Remark 3.13. Proposition 3.6(5) gives that $D(x) \quad G(X) \subseteq L_{p}(X)$.
Definition 3.14. An ideal A of a BCIK-algebra X is said to be D-invariant if $D(A) \subset A$.
Now, Proposition 3.8 helps to prove the following theorem.
Theorem 3.15. Let D be a left derivation of a BCIK-algebra X . Then D is regular if and only if ideal of X is D -invariant.

Proof.

Let D be a regular left derivation of a BCIK-algebra X. Then Proposition 3.8. gives that $D(x)=x$, for all
$x \quad X$. Let $y \quad D(A)$, where A is an ideal of X. Then $y=D(x)$ for some $x \quad A$. Thus $\mathrm{Y} * \mathrm{x}=\mathrm{D}(\mathrm{x}) * \mathrm{x}=\mathrm{x} * \mathrm{x}=0 \quad \mathrm{~A}$.
Then y $\quad \mathrm{A}$ and $\mathrm{D}(\mathrm{A}) \subset \mathrm{A}$. Therefore, A is D -invariant.
Conversely, let every ideal of X be D-invariant. Then $D(\{0\}) \subset\{0\}$ and hence $D(0)$ and D is regular.

Finally, we give a characterization of a left derivation of a p-semi simple BCIK-algebra.
Proposition 3.16. Let D be a left derivation of a p-semi simple BCIK-algebra. Then the following hold for all $\mathrm{x}, \mathrm{y} \quad \mathrm{X}$:
(1) $D(x * y)=x * D(y)$.
(2) $\mathrm{D}(\mathrm{x}) * \mathrm{x}=\mathrm{D}(\mathrm{y}) * \mathrm{Y}$.
(3) $D(x) * x=y * D(y)$.

Proof.

(1) Let $x, y \quad X$. Then
$\mathrm{D}(\mathrm{x} * \mathrm{y})=(\mathrm{x} * \mathrm{D}(\mathrm{y})) \wedge \wedge(\mathrm{y} * \mathrm{D}(\mathrm{x}))=\mathrm{x} * \mathrm{D}(\mathrm{y})$.
(2) We know that
$(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y})) \leq \mathrm{D}(\mathrm{y}) * \mathrm{y}$ and $(\mathrm{y} * \mathrm{x}) *(\mathrm{y} * \mathrm{D}(\mathrm{x})) \leq \mathrm{D}(\mathrm{x}) * \mathrm{x}$.
This means that
$((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))) *(\mathrm{D}(\mathrm{y}) * \mathrm{y})=0$, and
$((\mathrm{y} * \mathrm{x}) *(\mathrm{y} * \mathrm{D}(\mathrm{x}))) *(\mathrm{D}(\mathrm{x}) * \mathrm{x})=0$.
So
$((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))) *(\mathrm{D}(\mathrm{y}) * \mathrm{y})=((\mathrm{y} * \mathrm{x}) *(\mathrm{y} * \mathrm{D}(\mathrm{x}))) *(\mathrm{D}(\mathrm{x}) * \mathrm{x})$.
Using Proposition 3.3(1), we get,
$(x * y) * D(x * y)=(y * x) * D(y * x)$.
By (I), (II) yields
$(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))=(\mathrm{y} * \mathrm{x}) *(\mathrm{y} * \mathrm{D}(\mathrm{x}))$.
Since X is a p-semi simple BCIK-algebra. (I) implies that $\mathrm{D}(\mathrm{x}) * \mathrm{x}=\mathrm{D}(\mathrm{y}) * \mathrm{y}$.
(3) We have, $\mathrm{D}(0)=\mathrm{x} * \mathrm{D}(\mathrm{x})$. From (2), we get $\mathrm{D}(0) * 0=\mathrm{D}(\mathrm{y}) * \mathrm{y}$ or $\mathrm{D}(0)=\mathrm{D}(\mathrm{y}) * \mathrm{y}$.

So $D(x) * x=y * D(y)$.
Theorem 3.17. In a p-semi simple BCIK-algebra X a self-map D of X is left derivation if and only if and if it is derivation.

Proof.

Assume that D is a left derivation of a BCIK-algebra X . First, we show that D is a $(\mathrm{r}, 1)$-derivation of X . Then

$$
\begin{aligned}
\mathrm{D}(\mathrm{x} * \mathrm{y}) & =\mathrm{x} * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{D}(\mathrm{x}) * \mathrm{y}) *((\mathrm{D}(\mathrm{x}) * \mathrm{Y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))) \\
& =(\mathrm{x} * \mathrm{D}(\mathrm{y})) \wedge(\mathrm{D}(\mathrm{x}) * \mathrm{y})
\end{aligned}
$$

Now, we show that D is a (r, l)-derivation of X . Then

$$
\begin{aligned}
\mathrm{D}(\mathrm{x} * \mathrm{Y}) & =\mathrm{x} * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{x} * 0) * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{x} *(\mathrm{D}(0) * \mathrm{D}(0)) * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{x} *((\mathrm{x} * \mathrm{D}(\mathrm{x})) *(\mathrm{D}(\mathrm{y}) * \mathrm{y}))) * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{x} *((\mathrm{x} * \mathrm{D}(\mathrm{y})) *(\mathrm{D}(\mathrm{x}) * \mathrm{y}))) * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{x} * \mathrm{D}(\mathrm{y}) *((\mathrm{x} * \mathrm{D}(\mathrm{y})) *(\mathrm{D}(\mathrm{x}) * \mathrm{Y})) \\
& =(\mathrm{D}(\mathrm{x}) * \mathrm{y}) \wedge(\mathrm{x} * \mathrm{D}(\mathrm{y})) .
\end{aligned}
$$

Therefore, D is a derivation of X .
Conversely, let D be a derivation of X. So it is a (r, l)-derivation of X. Then

$$
D(x * y)=(x * D(y)) \wedge(D(x) * y)
$$

$$
\begin{aligned}
& =(\mathrm{D}(\mathrm{x}) * \mathrm{y}) *((\mathrm{D}(\mathrm{x}) * \mathrm{y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))) \\
& =\mathrm{x} * \mathrm{D}(\mathrm{y})=(\mathrm{y} * \mathrm{D}(\mathrm{x})) *((\mathrm{y} * \mathrm{D}(\mathrm{x})) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))) \\
& =(\mathrm{x} * \mathrm{D}(\mathrm{y})) \wedge(\mathrm{y} * \mathrm{D}(\mathrm{x})) .
\end{aligned}
$$

Hence, D is a left derivation of X.

4. t-Derivations in BCIK-algebra /p-Semi simple BCIK-algebra

The following definitions introduce the notion of t-derivation for a BCIK-algebra.
Definition 4.1. Let X be a BCIK-algebra. Then for $t \quad X$, we define a self-map $d_{t}: X \rightarrow X$ by $d_{t}(x)=x$ * t for all x X.

Definition 4.2. Let X be a BCIK-algebra. Then for any $t \quad X$, a self-map $d_{t}: X \rightarrow X$ is called a leftrifht t -derivation or $(1, \mathrm{r})-\mathrm{t}$-derivation of X if it satisfies the identity $\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{Y})=\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right)$ for all
$\mathrm{x}, \mathrm{y} \quad \mathrm{X}$.
Definition 4.3. Let X be a BCIK-algebra. Then for any $t \quad X$, a self-map $d_{t}: X \rightarrow X$ is called a leftright t-derivation or $(1, r)-t$-derivation of X if it satisfies the identity $d_{t}(x * y)=\left(x * d_{t}(y)\right) \wedge\left(d_{t}(x) * y\right)$ for all $\mathrm{x}, \mathrm{y} \quad \mathrm{X}$.
Moreover, if d_{t} is both a $(1, r)$ and a (r, l)-t-derivation on X, we say that d_{t} is a t-derivation on X.
Example 4.4. Let $\mathrm{X}=\{0,1,2\}$ be a BCIK-algebra with the following Cayley table:

$*$	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

For any $t \quad X$, define a self-map $d_{t}: X \rightarrow X$ by $d_{t}(x)=x * t$ for all $x \quad X$. Then it is easily checked that d_{t} is a t-derivation of X.

Proposition 4.5. Let d_{t} be a self-map of an associative BCIK-algebra X. Then d_{t} is a (1 , r)-t-derivation of X.
Proof. Let X be an associative BCIK-algebra, then we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y}) & =(\mathrm{x} * \mathrm{y}) \\
& =\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} * 0 \\
& =\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *[\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\}] \\
& =\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *[\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *\{(\mathrm{x} * \mathrm{y}) * \mathrm{t}\}] \\
& =\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *[\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\}] \\
& =((\mathrm{x} * \mathrm{t}) * \mathrm{y}) \wedge(\mathrm{x} *(\mathrm{y} * \mathrm{t})) \\
& =\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right)
\end{aligned}
$$

Proposition 4.6. Let d_{t} be a self-map of an associative BCIK-algebra X. Then, d_{t} is a $(r, 1)$ - t-derivation of X.
Proof. Let X be an associative BCIK-algebra, then we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y}) & =(\mathrm{x} * \mathrm{y}) * \mathrm{t} \\
& =\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} * 0
\end{aligned}
$$

$$
\begin{aligned}
& =\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *[\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *\{(\mathrm{x} * \mathrm{t}) * \mathrm{y})] \\
& =\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *[\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *\{(\mathrm{x} * \mathrm{y}) * \mathrm{t}\}] \\
& =\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *[\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\}] \\
& =(\mathrm{x} *(\mathrm{y} * \mathrm{t})) \wedge((\mathrm{x} * \mathrm{t}) * \mathrm{y}) \\
& =\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right)
\end{aligned}
$$

Combining Propositions 4.5 and 4.6 , we get the following Theorem.
Theorem 4.7. Let d_{t} be a self-map of an associative BCIK-algebra X. Then, d_{t} is a t-derivation of x.
Definition 4.8. A self-map d_{t} of a BCIK-algebra X is said to be t-regular if $d_{t}(0)=0$.
Example 4.9. Let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}\}$ be a BCIK-algebra with the following Cayley table:

$*$	0	a	b
0	0	0	b
a	a	0	b
b	b	b	0

(1) For any $t \quad X$, define a self-map $d_{t}: X \rightarrow X$ by

$$
\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{x} * \mathrm{t}=\left\{\begin{array}{c}
\text { bif } x=0, a \\
0 \text { if } x=b
\end{array}\right.
$$

Then it is easily checked that d_{t} is (l, r) and (r, l) - t -derivations of X , which is not t -regular.
(2) For any $t \quad X$, define a self-map $d_{t}: X \rightarrow X$ by

$$
\begin{aligned}
d_{t}^{\prime}(x)=x * t= & 0 \text { if } x=0, a \\
& b \text { if } x=b .
\end{aligned}
$$

Then it is easily checked that d_{t} ' is (l, r) and (r, l)-t-derivations of X, which is t-regular.
Proposition 4.10. Let d_{t} be a self-map of a BCIK-algebra X. Then
(1) If d_{t} is a (l, r)-t- derivation of x, then $d_{t}(x)=d_{t}(x) \wedge x$ for all $x \quad X$.
(2) If d_{t} is a (r, l)-t-derivation of X, then $d_{t}(x)=x \wedge d_{t}(x)$ for all $x \quad X$ if and only if d_{t} is t-regular.

Proof.

(1) Let d_{t} be a (l, r)-t-derivation of X, then

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x}) & =\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0) \\
& =\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right) \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right) \\
& =\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right\} *\left[\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right\} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right] \\
& =\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right\} *\left[\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\} * \mathrm{~d}_{\mathrm{t}}(0)\right] \\
& \leq \mathrm{x} *\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\} \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge \mathrm{x} .
\end{aligned}
$$

But $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge \mathrm{x} \leq \mathrm{d}_{\mathrm{t}}(\mathrm{x})$ is trivial so (1) holds.
(2) Let d_{t} be a (r, l)-t-derivation of X. If $d_{t}(x)=x \leq d_{t}(x)$ then

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(0) & =0 \wedge \mathrm{~d}_{\mathrm{t}}(0) \\
& =\mathrm{d}_{\mathrm{t}}(0) *\left\{\mathrm{~d}_{\mathrm{t}}(0) * 0\right\} \\
& =\mathrm{d}_{\mathrm{t}}(0) * \mathrm{~d}_{\mathrm{t}}(0) \\
& =0
\end{aligned}
$$

Thereby implying d_{t} is t-regular. Conversely, suppose that d_{t} is t-regular, that is $d_{t}(0)=0$, then we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(0) & =\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0) \\
& =\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right) \\
& =(\mathrm{x} * 0) \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{x}) \\
& =\mathrm{x} \wedge \mathrm{~d}_{\mathrm{t}}(\mathrm{x})
\end{aligned}
$$

The completes the proof.
Theorem 4.11. Let d_{t} be a (l, r)-t-derivation of a p-semi simple BCIK-algebra X . Then the following hold:
(1) $\mathrm{d}_{\mathrm{t}}(0)=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}$ for all $\mathrm{x} \quad \mathrm{X}$.
(2) d_{t} is one-0ne.
(3) If there is an element $x \quad X$ such that $d_{t}(x)=x$, then d_{t} is identity map.
(4) If $x \leq y$, then $d_{t}(x) \leq d_{t}(y)$ for all $x, y \quad X$.

Proof.

(1) Let d_{t} be a (l, r)-t-derivation of a p-semi simple BCIK-algebra X. Then for all $x \quad X$, we have $\mathrm{x} * \mathrm{x}=0$ and so

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(0) & =\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{x}) \\
& =\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right) \\
& =\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\} *\left[\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\} *\left\{\mathrm{~d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}\right\}\right] \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}
\end{aligned}
$$

(2) Let $\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{y}) \Rightarrow \mathrm{x} * \mathrm{t}=\mathrm{y} * \mathrm{t}$, then we have $\mathrm{x}=\mathrm{y}$ and so d_{t} is one-one.
(3) Let d_{t} be t-regular and $\mathrm{x} \quad \mathrm{X}$. Then, $0=\mathrm{d}_{\mathrm{t}}(0)$ so by the above part(1), we have $0=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}$ and, we obtain $d_{t}(x)=x$ for all $x \quad X$. Therefore, d_{t} is the identity map.
(4) It is trivial and follows from the above part (3).

Let $\mathrm{x} \leq \mathrm{y}$ implying $\mathrm{x} * \mathrm{y}=0$. Now,

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y}) & =(\mathrm{x} * \mathrm{t}) *(\mathrm{y} * \mathrm{t}) \\
& =\mathrm{x} * \mathrm{y} \\
& =0 .
\end{aligned}
$$

Therefore, $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$. This completes proof.
Definition 4.12. Let d_{t} be a t-derivation of a BCIK-algebra X. Then, d_{t} is said to be an isotone t derivation if $\mathrm{x} \leq \mathrm{y} \Rightarrow \mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \quad \mathrm{X}$.

Example 4.13. In Example 4.9(2), d_{t} ' is an isotone t -derivation, while in Example 4.9(1), d_{t} is not an isotone t-derivation.

Proposition 4.14. Let X be a BCIK-algebra and d_{t} be a t-derivation on X. Then for all x, $y \quad X$, the following hold:
(1) If $d_{t}(x \wedge y)=d_{t}(x) d_{t}(x) d_{t}(x)$, then d_{t} is an isotone t-derivation
(2) If $d_{t}(x \wedge y)=d_{t}(x) * d_{t}(y)$, then d_{t} is an isotone t-derivation.

Proof.

(1) Let $d_{t}(x \wedge y)=d_{t}(x) \wedge d_{t}(x)$. If $x \leq y \Rightarrow x \wedge y=x$ for all $x, y \quad X$. Therefore, we have $d_{t}(x)=d_{t}(x \wedge y)$

$$
\begin{aligned}
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{y}) \\
& \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y}) .
\end{aligned}
$$

Henceforth $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$ which implies that d_{t} is an isotone t -derivation.
(2) Let $d_{t}(x * y)=d_{t}(x) * d_{t}(y)$. If $x \leq y \Rightarrow x * y=0$ for all $x, y \quad X$. Therefore, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x}) & =\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0) \\
& =\mathrm{d}_{\mathrm{t}}\{\mathrm{x} *(\mathrm{x} * \mathrm{y})\} \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y}) \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) *\left\{\mathrm{~d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right\} \\
& \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y}) .
\end{aligned}
$$

Thus, $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$. This completes the proof.
Theorem 4.15. Let d_{t} be a t-regular (r, l)-t-derivation of a BCIK-algebra X . Then, the following hold:
(1) $d_{t}(x) \leq x$ for all $x \quad X$.
(2) $d_{t}(x) * y \leq x * d_{t}(y)$ for all $x, y \quad X$.
(3) $d_{t}(x * y)=d_{t}(x) * y \leq d_{t}(x) * d_{t}(y)$ for all $x, y \quad X$.
(4) $\operatorname{Ker}\left(\mathrm{d}_{\mathrm{t}}\right)=\left\{\mathrm{x} \quad \mathrm{X}: \mathrm{d}_{\mathrm{t}}(\mathrm{x})=0\right\}$ is a sub algebra of X .

Proof.

(1) For any $x \quad X$,
we have $\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0)=\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right)=(\mathrm{x} * 0) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right)=\mathrm{x} \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{x}$.
(2) Since $d_{t}(x) \leq x$ for all $x \quad X$, then $d_{t}(x) * y \leq x * y \leq x * d_{t}(y)$ and hence the proof follows.
(3) For any x, $y \quad X$, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y}) & =\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right) \\
& =\left\{\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right\} *\left[\left\{\mathrm{~d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right\} *\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\}\right] \\
& =\left\{\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right\} * 0 \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y} \leq \mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{x}) .
\end{aligned}
$$

(4) Let x , $\mathrm{y} \quad \operatorname{ker}\left(\mathrm{d}_{\mathrm{t}}\right) \Rightarrow \mathrm{d}_{\mathrm{t}}(\mathrm{x})=0=\mathrm{d}_{\mathrm{t}}(\mathrm{y})$. From (3), we have $\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})=0 * 0=0$ implying $d_{t}(x * y) \leq 0$ and so $d_{t}(x * y)=0$. Therefore, $x * y \quad \operatorname{ker}\left(d_{t}\right)$. Consequently, $\operatorname{ker}\left(d_{t}\right)$ is a sub algebra of X . This completes the proof.

Definition 4.16. Let X be a BCIK-algebra and let d_{t}, d_{t}, be two self-maps of X. Then we define d_{t} o d ${ }_{t}{ }^{\prime}: X \rightarrow X$ by $\left(d_{t}\right.$ o $\left.d_{t}{ }^{\prime}\right)(x)=d_{t}\left(d_{t}{ }^{\prime}(x)\right)$ for all $x \quad X$.

Example 4.17. Let $X=\{0, a, b\}$ be a BCIK-algebra which is given in Example 4.4. Let d_{t} and $d_{t}{ }^{\prime}$ be two
self-maps on X as define in Example 4.9(1) and Example 4.9(2), respectively.
Now, define a self-map d_{t} o $\mathrm{d}_{\mathrm{t}}{ }^{\prime}: \mathrm{X} \rightarrow \mathrm{X}$ by

$$
\left(\mathrm{d}_{\mathrm{t}} \mathrm{o} \quad \mathrm{~d}_{\mathrm{t}}{ }^{\prime}\right)(\mathrm{x})=\left\{\begin{array}{c}
0 \text { if } \quad x=a, b \\
b \text { if } x=0
\end{array}\right.
$$

Then, it easily checked that $\left(d_{t}\right.$ o $\left.d_{t}{ }^{\prime}\right)(x)=d_{t}\left(d_{t}^{\prime}(x)\right)$ for all $\mathrm{x} \quad \mathrm{X}$.

Proposition 4.18. Let X be a p-semi simple BCIK-algebra X and let $d_{t}, d_{t}{ }^{\prime}$ be (l, r)-t-derivations of X. Then, d_{t} o d ${ }_{\mathrm{t}}{ }^{\prime}$ is also a ($1, r$)-t-derivation of X .

Proof. Let X be a p-semi simple BCIK-algebra. d_{t} and $\mathrm{d}_{\mathrm{t}}{ }^{\prime}$ are ($1, \mathrm{r}$)-t-derivations of X . Then for all x, y
X , we get

$$
\begin{aligned}
\left(\mathrm{d}_{\mathrm{t}} o \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}, \mathrm{y})\right) \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right)\right] \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{x}^{\prime} * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right) *\left\{\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) *\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\}\right] \\
& =\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right) \\
& =\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right)\right\} *\left[\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right)\right\} *\left\{\mathrm{~d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\}\right] \\
& \left.\left.=\left\{\mathrm{d}_{\mathrm{t}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}\right.}(\mathrm{x}) * \mathrm{y}\right)\right\} \wedge\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}\right.}(\mathrm{y})\right)\right\} \\
& =\left(\left(\mathrm{d}_{\mathrm{t}} \mathrm{o} \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{x} *\left(\mathrm{~d}_{\mathrm{t}} \mathrm{od} \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{y})\right)
\end{aligned}
$$

Therefore, $\left(d_{t} \mathrm{od}_{\mathrm{t}}{ }^{\prime}\right)$ is a (l, r)-t-derivation of X .
Similarly, we can prove the following.
Proposition 4.19. Let X be a p-semi simple BCIK-algebra and let d_{t}, d_{t} be (r, l)-t-derivations of X.
Then,
d_{t} o d ${ }_{t}$ ' is also a (r, l)-t-derivation of X.
Combining Propositions 3.18 and 3.19, we get the following.
Theorem 4.20. Let X be a p-semi simple BCIK-algebra and let d_{t}, d_{t} ' be t-derivations of X. Then, $d_{t} o$ $d_{t}{ }^{\prime}$ is also a t-derivation of X.

Now, we prove the following theorem
Theorem 4.21. Let X be a p-semi simple BCIK-algebra and let $d_{t}, \mathrm{~d}_{\mathrm{t}}$, be t -derivations of X .
Then d_{t} o d $_{\mathrm{t}}{ }^{\prime}=\mathrm{d}_{\mathrm{t}}{ }^{\prime}$ o d_{t}.
Proof. Let X be a p-semi simple BCIK-algebra. d_{t} and $d_{t}{ }^{\prime}$, t-derivations of X. Suppose $d_{t}{ }^{\prime}$ is a $(1, \mathrm{r})$ - t -derivation, then for all $\mathrm{x}, \mathrm{y} \quad \mathrm{X}$, we have

$$
\begin{aligned}
\left(\mathrm{d}_{\mathrm{t}} \circ \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x} * \mathrm{y})\right) \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right)\right] \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right) *\left\{\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) *\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\}\right] \\
& =\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)
\end{aligned}
$$

As d_{t} is a (r, l)-t-derivation, then

$$
\begin{aligned}
& =\left(d_{t}^{\prime}(x) * d_{t}(y)\right) \wedge\left(d_{t}\left(d_{t}^{\prime}(x)\right) * y\right) \\
& =d_{t}^{\prime}(x) * d_{t}(y) .
\end{aligned}
$$

Again, if d_{t} is a (r, l)-t-derivation, then we have

$$
\begin{aligned}
\left(\mathrm{d}_{\mathrm{t}} \circ \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{\mathrm{t}}^{\prime}{ }^{\prime}\left[\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y})\right] \\
& =\mathrm{d}_{\mathrm{t}}^{\prime}\left[\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right)\right] \\
& =\mathrm{d}_{\mathrm{t}}^{\prime}\left[\mathrm{x}^{*} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right] \\
\text { vation, then } & =\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}^{\prime}\left(\mathrm{d}_{\mathrm{t}}(\mathrm{y})\right)\right. \\
& =\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})
\end{aligned}
$$

But $\mathrm{d}_{\mathrm{t}}{ }^{\prime}$ is a (l, r$)$-t-derivation, then

Therefore, we obtain
$\left(d_{t}\right.$ o d $\left.d_{t}^{\prime}\right)(x * y)=\left(d_{t}^{\prime}\right.$ o $\left.d_{t}\right)(x * y)$.
By putting $\mathrm{y}=0$, we get

$$
\left(d_{t} \circ d_{t^{\prime}}\right)(x)=\left(d_{t}^{\prime} \circ \mathrm{od}_{\mathrm{t}}\right)(\mathrm{x}) \text { for all } \mathrm{x} \quad \mathrm{X} .
$$

Hence, $\mathrm{d}_{\mathrm{t}} \mathrm{od}_{\mathrm{t}}{ }^{\prime}=\mathrm{d}_{\mathrm{t}}{ }^{\prime}$ o d_{t}. This completes the proof.

Definition 4.22. Let X be a BCIK-algebra and let d_{t}, d_{t} ' two self-maps of X. Then we define $\mathrm{d}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{t}}{ }^{\prime}: \mathrm{X} \rightarrow \mathrm{X}$ by $\left(\mathrm{d}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{t}}{ }^{\prime}\right)(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x})$ for all $\mathrm{x} \quad \mathrm{X}$.

Example 4.23. Let $X=\{0, a, b\}$ be a BCIK-algebra which is given in Example 3.4. let d_{t} and $d_{t}{ }^{\prime}$ be two Self-maps on X as defined in Example 4.9 (1) and Example 4.10 (2), respectively.

Now, define a self-map $\mathrm{d}_{\mathrm{t}}{ }^{*} \mathrm{~d}_{\mathrm{t}}{ }^{\prime}: \mathrm{X} \rightarrow \mathrm{X}$ by

$$
\left(\mathrm{d}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x})=\left\{\begin{array}{c}
0 \text { if } x=a, b \\
\text { bif } x=0 .
\end{array}\right.
$$

Then, it is easily checked that $\left(\mathrm{d}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{t}}{ }^{\prime}\right)(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}{ }^{\prime}(\mathrm{x})$ for all $\mathrm{x} \quad \mathrm{X}$.
Theorem 4.24. Let X be a p-semi simple BCIK-algebra and let $d_{t}, d_{t}{ }^{\prime}$ be t-derivations of X.
Then $\mathrm{d}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{t}}{ }^{\prime}=\mathrm{d}_{\mathrm{t}}{ }^{\prime} * \mathrm{~d}_{\mathrm{t}}$.
Proof. Let X be a p-semi simple BCIK-algebra. d_{t} and d_{t}, t -derivations of X .
Since d_{t} ' is a (r, l)-t-derivation of X, then for all $x, y \quad X$, we have

$$
\begin{aligned}
\left(\mathrm{d}_{\mathrm{t}} \circ \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x} * \mathrm{y})\right) \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{x}^{\prime} \mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right] \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right]\right. \\
& =\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right)\right. \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x})
\end{aligned}
$$

But d_{t} is a (l, r)-r-derivation, so

Again, if d_{t} ' is a (l, r)-t-derivation of X, then for all $x, y \quad X$, we have

$$
\begin{aligned}
\left(\mathrm{d}_{\mathrm{t}} \circ \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{\mathrm{t}}\left[\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x} * \mathrm{y})\right] \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right)\right] \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right) *\left\{\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right) *\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\}\right] \\
& =\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right) . \\
& =\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x})\right) * \mathrm{y}\right) \\
& =\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y}) .
\end{aligned}
$$

As d_{t} is a $(r, 1)$-t-derivation, then

Henceforth, we conclude

$$
d_{t}(x) * d_{t}^{\prime}(y)=d_{t}^{\prime}(x) * d_{t}(y)
$$

By putting $\mathrm{y}=\mathrm{x}$, we get

$$
\begin{array}{ll}
& d_{t}(x) * d_{t}{ }^{\prime}(x)=d_{t}^{\prime}(x) * d_{t}(x) \\
& \left(d_{t} * d_{t}^{\prime}\right)(x)=\left(d_{t}{ }^{\prime} * d_{t}\right)(x) \text { for all } x \quad X . \\
\text { Hence } & d_{t} * d_{t}^{\prime}=d_{t}{ }^{\prime} * d_{t} . \text { This completes the proof. }
\end{array}
$$

5. f-derivation of BCIK-algebra

In what follows, let be an endomorphism of X unless otherwise specified.
Definition 5.1. Let X be a BCIK algebra. By a left f-derivation (briefly, (l, r)-f-derivation) of X , a self$\operatorname{map} \mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{y})=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right)$ for all $\mathrm{x}, \mathrm{y} \quad \mathrm{X}$ is meant, where f is an endomorphism of
X. If d_{f} satisfies the identity $\mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{y})=\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right)$ for all $\mathrm{x}, \mathrm{y} \quad \mathrm{X}$, then it is said that d_{f} is a right-left f -derivation (briefly, (r, l)-f-derivation) of X . Moreover, if d_{f} is both an (r, l)-fderivation, it is said that d_{f} is an f -derivation.

Example 5.2. Let $\mathrm{X}=\{0,1,2,3,4,5\}$ be a BCIK-algebra with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	2	2	2	2
1	1	0	2	2	2	2
2	2	2	0	0	0	0
3	3	2	1	0	0	0
4	4	2	1	1	0	1
5	5	2	1	1	1	0

Define a Map $\mathrm{d}_{\mathrm{f}}: \mathrm{X} \rightarrow \mathrm{X}$ by

$$
\mathrm{d}_{\mathrm{f}}=\left\{\begin{array}{c}
2 \text { if } x=0,1, \\
0 \text { otherwise },
\end{array}\right.
$$

and define and endomorphism f of X by

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
2 \text { if } x=0,1, \\
0 \text { otherwise }
\end{array}\right.
$$

That it is easily checked that d_{f} is both derivation and f-derivation of X .
Example 5.3. Let X be a BCIK-algebra as in Example 2.2. Define a map $d_{\mathrm{f}}: \mathrm{X} \rightarrow \mathrm{X}$ by

$$
\mathrm{d}_{\mathrm{f}}=\left\{\begin{array}{c}
2 \text { if } x=0,1, \\
0 \text { otherwise },
\end{array}\right.
$$

Then it is easily checked that d_{f} is a derivation of X .
Define an endomorphism f of X by

$$
f(x)=0, \text { for all } x \quad X
$$

Then d_{f} is not an f-derivation of X since

$$
\mathrm{d}_{\mathrm{f}}(2 * 3)=\mathrm{d}_{\mathrm{f}}(0)=2 \text {, }
$$

but

$$
\left(\mathrm{d}_{\mathrm{f}}(2) * \mathrm{f}(3)\right) \wedge\left(\mathrm{f}(2) * \mathrm{~d}_{\mathrm{f}}(3)\right)=(0 * 0) \wedge(0 * 0)=0 \wedge 0=0
$$

And thus $\mathrm{d}_{\mathrm{f}}(2 * 3) \neq\left(\mathrm{d}_{\mathrm{f}}(2) * \mathrm{f}(3)\right) \wedge\left(\mathrm{f}(2) * \mathrm{~d}_{\mathrm{f}}(3)\right)$.

Remark 5.4. From Example 5.3, we know that there is a derivation of X which is not an f-derivation X. Example 2.5. Let $\mathrm{X}=\{0,1,2,3,4,5\}$ be a BCIK-algebra with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	3	2	3	2
1	1	1	5	4	3	2
2	2	2	0	3	0	3
3	3	3	2	0	2	0
4	4	2	1	5	0	3
5	5	3	4	1	2	0

Define a map $\mathrm{d}_{\mathrm{f}}: \mathrm{X} \rightarrow \mathrm{X}$ by

$$
\mathrm{d}_{\mathrm{f}}(\mathrm{x})= \begin{cases}0 & \text { if } \\ 2 & x=0,1, \\ 3 & \text { if } \\ 3 & \text { if } \\ x & =3,5,5\end{cases}
$$

and define an endomorphism f of X by

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
0 \text { if } x=0,1, \\
2 \text { if } x=2,4, \\
3 \text { if } x=3,5,
\end{array}\right.
$$

Then it is easily checked that d_{f} is both derivation and f -derivation of X .
Example 5.6. Let X be a BCIK-algebra as in Example 5.5. Define a map $\mathrm{d}_{\mathrm{f}}: \mathrm{X} \rightarrow \mathrm{X}$ by

$$
\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\left\{\begin{array}{lll}
0 & \text { if } & x=0,1, \\
2 & \text { if } & x=2,4, \\
3 & \text { if } & x=3,5,
\end{array}\right.
$$

Then it is easily checked that d_{f} is a derivation of X .
Define an endomorphism f of X by

$$
\mathrm{f}(0)=0, \mathrm{f}(1)=1, \mathrm{f}(2)=3 \mathrm{f}(3)=2, \quad \mathrm{f}(4)=5, \quad \mathrm{f}(5)=4
$$

Then d_{f} is not an f-derivation of X since

$$
\mathrm{d}_{\mathrm{f}}(2 * 3)=\mathrm{d}_{\mathrm{f}}(3)=3,
$$

but

$$
\left(\mathrm{d}_{\mathrm{f}}(2) * \mathrm{f}(3)\right) \wedge\left(\mathrm{f}(2) * \mathrm{~d}_{\mathrm{f}}(3)\right)=(2 * 2) \wedge(3 * 3)=0 \wedge 0=0
$$

And thus $\quad d_{f}(2 * 3) \neq\left(\mathrm{d}_{\mathrm{f}}(2) * \mathrm{f}(3)\right) \wedge\left(\mathrm{f}(2) * \mathrm{~d}_{\mathrm{f}}(3)\right)$.
Example 5.7. Let X be a BCIK-algebra as in Example 2.5. Define a map $d_{f}: X \rightarrow X$ by $d_{f}(0)=0, \quad d_{f}(1)=1, \quad d_{f}(2)=3, \quad d_{f}(3)=2, \quad d_{f}(4)=5, \quad d_{f}(5)=4$,

Then d_{f} is not a derivation of X since

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{f}}(2 * 3)=\mathrm{d}_{\mathrm{f}}(3)=2, \\
& \left(\mathrm{~d}_{\mathrm{f}}(2) * 3\right) \wedge\left(2 * d_{\mathrm{f}}(3)\right)=(3 * 3) \wedge(2 * 2)=0 \wedge 0=0,
\end{aligned}
$$

And thus And thus $d_{\mathrm{f}}(2 * 3) \neq\left(\mathrm{d}_{\mathrm{f}}(2) * 3\right) \wedge\left(2 * d_{\mathrm{f}}(3)\right)$.
Define an endomorphism f of X by

$$
\mathrm{f}(0)=0, \quad \mathrm{f}(1)=1, \quad \mathrm{f}(2)=3, \quad \mathrm{f}(3)=2, \quad \mathrm{f}(4)=5, \quad \mathrm{f}(5)=4 .
$$

Then it is easily checked that d_{f} is an f -derivation of X .

Remark 5.8. From Example 5.7, we know there is an f-derivation of X which is not a derivation of X. For convenience, we denote $f_{x}=0 *(0 * f(x))$ for all $x \quad X$. Note that $f_{x} \quad L_{p}(X)$.

Theorem 5.9. Let d_{f} be a self-map of a BCIK-algebra X define by $d_{f}(x)=f_{x}$ for all $x \quad X$. Then d_{f} is an (l, r)-f-derivation of X. Moreover, if X is commutative, then d_{f} is an ($r, 1$)-f-derivation of X.

Proof. Let x, y X
Since

$$
\begin{aligned}
0 *\left(0 *\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})\right)\right) & =0 *(0 *((0 *(0 * \mathrm{f}(\mathrm{x})) * \mathrm{f}(\mathrm{y}))) \\
& =0 *((0 *((0 * \mathrm{f}(\mathrm{y})) *(0 * \mathrm{f}(\mathrm{x})))) \\
& =0 *(0 *(0 * \mathrm{f}(\mathrm{y} * \mathrm{x})))=0 * \mathrm{f}(\mathrm{y} * \mathrm{x}) \\
& =0 *(\mathrm{f}(\mathrm{y}) * \mathrm{f}(\mathrm{x}))=(0 * \mathrm{f}(\mathrm{y})) *(0 * \mathrm{f}(\mathrm{x})) \\
& =(0 *(0 * \mathrm{f}(\mathrm{x}))) * \mathrm{f}(\mathrm{y})=\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y}),
\end{aligned}
$$

We have $f_{x} * f(y) \quad L_{p}(X)$, and thus

$$
\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})=\left(\mathrm{f}(\mathrm{x}) * \mathrm{f}_{\mathrm{y}}\right) *\left(\left(\mathrm{f}(\mathrm{x}) * \mathrm{f}_{\mathrm{y}}\right) *\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})\right)\right)
$$

It follows that

$$
\begin{aligned}
\mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{x}) & =\mathrm{f}_{\mathrm{x}} * \mathrm{x}=0 *(0 * \mathrm{f}(\mathrm{x} * \mathrm{y}))=0 *(0 *(\mathrm{f}(\mathrm{x}) * \mathrm{f}(\mathrm{y}))) \\
& =\left(0 *(0 * \mathrm{f}(\mathrm{x})) *(0 *(0 * \mathrm{f}(\mathrm{y})))=\mathrm{f}_{\mathrm{x}} * \mathrm{f}_{\mathrm{y}}\right. \\
& =\left(0 *\left(0 * \mathrm{f}_{\mathrm{x}}\right)\right) *(0 *(0 * \mathrm{f}(\mathrm{y})))=0 *\left(0 *\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})\right)\right) \\
& =\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})=\left(\mathrm{f}(\mathrm{x}) * \mathrm{f}_{\mathrm{y}}\right) *\left(\left(\mathrm{f}(\mathrm{x}) * \mathrm{f}_{\mathrm{y}}\right) *\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})\right)\right) \\
& =\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})\right) \wedge\left(\mathrm{f}(\mathrm{x}) \wedge \mathrm{f}_{\mathrm{y}}\right)=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right),
\end{aligned}
$$

And so d_{f} is an (1, r)-f-derivation of X . Now, assume that X is commutative. $\operatorname{So~}_{\mathrm{d}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})$ and $\mathrm{f}(\mathrm{x}) *$ $d_{f}(y)$ belong to the same branch $x, y \quad X$, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y}) & =\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})=\left(0 *\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}(\mathrm{y})\right)\right) \\
& =\left(0 *\left(0 * \mathrm{f}_{\mathrm{x}}\right)\right) *(0 *(0 * \mathrm{f}(\mathrm{y}))) \\
& =\mathrm{f}_{\mathrm{x}} * \mathrm{f}_{\mathrm{x}} \quad \mathrm{~V}\left(\mathrm{f}_{\mathrm{x}} * \mathrm{f}_{\mathrm{x}}\right),
\end{aligned}
$$

And so $\mathrm{f}_{\mathrm{x}} * \mathrm{f}_{\mathrm{x}}=(0 *(0 * \mathrm{f}(\mathrm{x}))) *\left(0 *\left(0 * \mathrm{f}_{\mathrm{y}}\right)\right)=0 *\left(0 *\left(\mathrm{f}(\mathrm{x}) * \mathrm{f}_{\mathrm{y}}\right)\right)=0 *\left(0 *\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right) \leq \mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}\right.$ (y), which implies that $f(x) * d_{f}(y) \quad V\left(f_{x} * f_{x}\right)$. Hence, $d_{f}(y) * f(y)$ and $f(x) * d_{f}(y)$ belong to the same branch, and so

$$
\begin{aligned}
\mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{x}) & =\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right) \\
& =\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) .
\end{aligned}
$$

This completes the proof.
Proposition 5.10. Let d_{f} be a self-map of a BCIK-algebra. Then the following hold.
(1) If d_{f} is an (l, r)-f-derivation of X, then $d_{f}(x)=d_{f}(x) \wedge f(x)$ for all $x \quad X$.
(2) If d_{f} is an (r, l)-f-derivation of X, then $d_{f}(x)=f(x) \wedge d_{f}(x)$ for all $x \quad X$ if and only if $d_{f}(0)=$ 0 .

Proof.

(1) Let d_{f} is an (r, l)-f-derivation of X, Then,

$$
\begin{aligned}
\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\mathrm{d}_{\mathrm{f}}(\mathrm{x} * 0) & =\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(0)\right) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right) \\
& =\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * 0\right) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right)=\mathrm{d}_{\mathrm{f}}(\mathrm{x}) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right) \\
& =\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right) *\left(\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right) * \mathrm{~d}_{\mathrm{f}}(\mathrm{x})\right) \\
& =\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right) *\left(\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(0)\right) * \mathrm{~d}_{\mathrm{f}}(0)\right) \\
& \leq \mathrm{f}(\mathrm{x}) *\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{x})\right)=\mathrm{d}_{\mathrm{f}}(\mathrm{x}) \wedge \mathrm{f}(\mathrm{x}) .
\end{aligned}
$$

But $d_{f}(x) \wedge f(x) \leq d_{f}(x)$ is trivial and so (1) holds.
(2) Let d_{f} be an (r, l)-f-derivation of X. If $d_{f}(x)=f(x) * d_{f}(x)$ for all $x \quad X$, then for $x=0$, $\mathrm{d}_{\mathrm{f}}(0)=\mathrm{f}(0) * \mathrm{~d}_{\mathrm{f}}(0)=0 \wedge \mathrm{f}(0)=\mathrm{d}_{\mathrm{f}}(0) *\left(\mathrm{~d}_{\mathrm{f}}(0) * 0\right)=0$.
Conversely, if $\mathrm{d}_{\mathrm{f}}(0)=0$, then $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\mathrm{d}_{\mathrm{f}}(\mathrm{x} * 0)=\left(\mathrm{f}(\mathrm{x}) *\left(\mathrm{~d}_{\mathrm{f}}(0)\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(0)\right)=\right.$ $(\mathrm{f}(\mathrm{x}) * 0)) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * 0\right)=\mathrm{f}(\mathrm{x}) \wedge \mathrm{d}_{\mathrm{f}}(\mathrm{x})$, ending the proof.

Proposition 5.11. Let d_{f} be an (1, r)-f-derivation of a BCIK-algebra X. Then,
(1) $d_{f}(x) \quad L_{p}(X)$, then is $d_{f}(0)=0 *\left(0 * d_{f}(x)\right)$;
(2) $\mathrm{d}_{\mathrm{f}}(\mathrm{a})=\mathrm{d}_{\mathrm{f}}(0) *(0 * \mathrm{f}(\mathrm{a}))=\mathrm{d}_{\mathrm{f}}(0)+\mathrm{f}(\mathrm{a})$ for all a $\quad \mathrm{L}_{\mathrm{p}}(\mathrm{X})$;
(3) $d_{f}(a) \quad L_{p}(X)$ for all a $L_{p}(X)$;
(4) $d_{f}(a+b)=d_{f}(a)+d_{f}(b)-d_{f}(0)$ for all $a, b \quad L_{p}(X)$.

Proof.

(1) The proof follows from Proposition 5.10(1).
(2) Let a $\quad L_{p}(X)$, then $a=0 *(0 * a)$, and so $f(a)=0 *(0 * f(a))$, that is, $f(b) \quad L_{p}(X)$.

Hence

$$
\begin{aligned}
\mathrm{d}_{\mathrm{f}}(\mathrm{a}) & =\mathrm{d}_{\mathrm{f}}(0 *(0 * \mathrm{a})) \\
& =\left(\mathrm{d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right) \wedge\left(\mathrm{f}(0) * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right) \\
& =\left(\mathrm{d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right) \wedge\left(0 * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right) \\
& =\left(0 * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right) *\left(\left(0 * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right) *\left(\mathrm{~d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right)\right) \\
& =\left(0 * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right) *\left(\left(0 *\left(\mathrm{~d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right)\right) * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right) \\
& =0 *\left(0 *\left(\mathrm{~d}_{\mathrm{f}}(0) *(0 * \mathrm{f}(\mathrm{a}))\right)\right) \\
& =\mathrm{d}_{\mathrm{f}}(0) *(0 * \mathrm{f}(\mathrm{a}))=\mathrm{d}_{\mathrm{f}}(0)+\mathrm{f}(\mathrm{a}) .
\end{aligned}
$$

(3) The proof follows directly from (2).
(4) Let $\mathrm{a}, \mathrm{b} \quad \mathrm{L}_{\mathrm{p}}(\mathrm{X})$. Note that $\mathrm{a}+\mathrm{b} \quad \mathrm{L}_{\mathrm{p}}(\mathrm{X})$, so from (2), we note that $d_{f}(a+b)=d_{f}(0)+f(a)+d_{f}(0)+f(b)-d_{f}(0)=d_{f}(a)+d_{f}(0)-d_{f}(0)$.

Proposition 5.12. Let d_{f} be a ($\left.\mathrm{r}, \mathrm{l}\right)$-f-derivation of a BCIK-algebra X. Then,
(1) $d_{f}(a) \quad G(X)$ for all a $G(X)$;
(2) $d_{f}\left(\right.$ a) $\quad L_{p}(X)$ for all a $G(X)$;
(3) $d_{f}(a)=f(a) * d_{f}(0)=f(a)+d_{f}(a)$ for all $a, b \quad L_{p}(X)$;
(4) $d_{f}(a+b)=d_{f}(a)+d_{f}(b)-d_{f}(0)$ for all $a, b \quad L_{p}(X)$.

Proof.

(1) For any a $G(X)$, we have $d_{f}(a)=d_{f}(0 * a)=\left(f(0) * d_{f}(a)\right) \wedge\left(d_{f}(0)+f(a)\right)$
$=\left(\mathrm{d}_{\mathrm{f}}(0)+\mathrm{f}(\mathrm{a})\right) *\left(\left(\mathrm{~d}_{\mathrm{f}}(0)+\mathrm{f}(\mathrm{a})\right) *\left(0 * \mathrm{~d}_{\mathrm{f}}(0)\right)\right)=0 * \mathrm{~d}_{\mathrm{f}}(0)$, and so $\mathrm{d}_{\mathrm{f}}(\mathrm{a}) \quad \mathrm{G}(\mathrm{X})$.
(2) For any a $L_{p}(X)$, we get
$\mathrm{d}_{\mathrm{f}}(\mathrm{a})=\mathrm{d}_{\mathrm{f}}(0 *(0 * \mathrm{a}))=\left(0 * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right)$
$=\left(\mathrm{d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right) *\left(\left(\mathrm{~d}_{\mathrm{f}}(0) * \mathrm{f}(0 * \mathrm{a})\right) *\left(0 * \mathrm{~d}_{\mathrm{f}}(0 * \mathrm{a})\right)\right)$
$=0 * d_{f}(0 * a) \quad L_{p}(X)$.
(3) For any a $L_{p}(X)$, we get
$\mathrm{d}_{\mathrm{f}}(\mathrm{a})=\mathrm{d}_{\mathrm{f}}(\mathrm{a} * 0)=\left(\mathrm{f}(\mathrm{a}) * \mathrm{~d}_{\mathrm{f}}(0)\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{a}) * \mathrm{f}(0)\right)$ $=\mathrm{d}_{\mathrm{f}}(\mathrm{a}) *\left(\mathrm{~d}_{\mathrm{f}}(\mathrm{a}) *\left(\mathrm{f}(\mathrm{a}) * \mathrm{~d}_{\mathrm{f}}(0)\right)\right)=\mathrm{f}(\mathrm{a}) * \mathrm{~d}_{\mathrm{f}}(0)$ $=\mathrm{f}(\mathrm{a}) *\left(\mathrm{o} * \mathrm{~d}_{\mathrm{f}}(0)\right)=\mathrm{f}(\mathrm{a})+\mathrm{d}_{\mathrm{f}}(\mathrm{a})$.
(4) The proof from (3). This completes the proof.

Using Proposition 5.12, we know there is an (l,r)-f-derivation which is not an (r,l)-f-derivation as shown in the following example.

Example 5.13. Let Z be the set of all integers and "-" the minus operation on Z . Then $(\mathrm{Z},-, 0)$ is a BCIK-algebra. Let $\mathrm{d}_{\mathrm{f}}: \mathrm{X} \rightarrow \mathrm{X}$ be defined by $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\mathrm{f}(\mathrm{x})-1$ for all $\mathrm{x} \quad \mathrm{Z}$.
Then,

$$
\begin{aligned}
\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x})-\mathrm{f}(\mathrm{y})\right) \wedge\left(\mathrm{f}(\mathrm{x})-\mathrm{d}_{\mathrm{f}}(\mathrm{y})\right) & =(\mathrm{f}(\mathrm{x})-1-\mathrm{f}(\mathrm{y})) \wedge(\mathrm{f}(\mathrm{x})-(\mathrm{f}(\mathrm{y})-1)) \\
& =(\mathrm{f}(\mathrm{x}-\mathrm{Y})-1) \wedge(\mathrm{f}(\mathrm{x}-\mathrm{y})+1) \\
& =(\mathrm{f}(\mathrm{x}-\mathrm{Y})+1)-2=\mathrm{f}(\mathrm{x}-\mathrm{Y})-1 \\
& =\mathrm{d}_{\mathrm{f}}(\mathrm{x}-\mathrm{y})
\end{aligned}
$$

Hence, d_{f} is an $(1, \mathrm{r})-\mathrm{f}$-derivation of X . $\operatorname{But} \mathrm{d}_{\mathrm{f}}(0)=\mathrm{f}(0)-1=-1 \neq 1=\mathrm{f}(0)-\mathrm{d}_{\mathrm{f}}(0)=0-\mathrm{d}_{\mathrm{f}}(0)$, that is, $\mathrm{d}_{\mathrm{f}}(0) \notin \mathrm{G}(\mathrm{X})$. Therefore, d_{f} is not an (r, l)-f-derivation of X by Proposition 2.12(1).

6. Regular f-derivations

Definition 6.1. An f-derivation d_{f} of a BCIK-algebra X is said to be a regular if $d_{f}(0)=0$
.Remark 6.2. we know that the f-derivations d_{f} in Example 5.5 and 5.7 are regular.
Proposition 6.3. Let X be a commutative BCIK-algebra and let d_{f} be a regular (r, l)-f-derivation of X . Then the following hold.
(1) Both $\mathrm{f}(\mathrm{x})$ and $\mathrm{d}_{\mathrm{f}}(\mathrm{x})$ belong to the same branch for all $\mathrm{x} \quad \mathrm{X}$.
(2) d_{f} is an (l, r)-f-derivation of X.

Proof.

(1) Let x X. Then,

$$
\begin{aligned}
0 & =\mathrm{d}_{\mathrm{f}}(0)=\mathrm{d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}} * \mathrm{x}\right) \\
& =\left(\mathrm{f}\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{~d}_{\mathrm{f}}(\mathrm{x})\right) \wedge\left(\mathrm{d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{f}(\mathrm{x})\right) \\
& =\left(\mathrm{d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{f}(\mathrm{x})\right) *\left(\left(\mathrm{~d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{f}(\mathrm{x})\right) *\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right)\right)\right) \\
& =\left(\mathrm{d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{f}(\mathrm{x})\right) *\left(\left(\mathrm{~d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) * \mathrm{f}(\mathrm{x})\right) *\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right)\right)\right) \\
& =\mathrm{f}_{\mathrm{x}} * \mathrm{~d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) \text { since } \mathrm{f}_{\mathrm{x}} * \mathrm{~d}_{\mathrm{f}}\left(\mathrm{a}_{\mathrm{x}}\right) \quad \mathrm{L}_{\mathrm{p}}(\mathrm{X}),
\end{aligned}
$$

And so $\mathrm{f}_{\mathrm{x}} \leq \mathrm{d}_{\mathrm{f}}(\mathrm{x})$. This shows that $\mathrm{d}_{\mathrm{f}}(\mathrm{x}) \quad \mathrm{V}(\mathrm{X})$, Clearly, $\mathrm{f}(\mathrm{x}) \quad \mathrm{V}(\mathrm{X})$.
(2) By (1), we have $f(x) * d_{f}(y) \quad V\left(f_{x} * f_{y}\right)$ and $d_{f}(x) * f(y) \quad V\left(f_{x} * f_{y}\right)$. Thus $\mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{y})=\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right)=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) \wedge\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right)$, which implies that d_{f} is an (l, r)-f-derivation of X.

Remark 6.4. The f-derivations d_{f} in Examples 5.5 and 5.7 are regular f-derivations but we know that the (l, r)-f-derivation d_{f} in Example 5.2 is not regular. In the following, we give some properties of regular f-derivations.

Definition 6.5. Let X be a BCIK-algebra. Then define $\operatorname{ker} d_{f}=\left\{\begin{array}{lll}x & X / d_{f}(x)=0 & \text { for all f-derivations }\end{array}\right.$ $\left.\mathrm{d}_{\mathrm{f}}\right\}$.

Proposition 6.6. Let d_{f} be an f-derivation of a BCIK-algebra X. Then the following hold:
(1) $d_{f}(x) \leq f(x)$ for all $x \quad X$;
(2) $d_{f}(x) * f(y) \leq f(x) * d_{f}(y)$ for all $x, y \quad X$;
(3) $d_{f}(x * y)=d_{f}(x) * f(y) \leq d_{f}(x) * d_{f}(y)$ for all $x, y \quad X$;
(4) ker d_{f} is a sub algebra of X. Especially, if f is monic, then $\operatorname{ker}_{f} \subseteq X_{+}$.

Proof.
(1) The proof follows by Proposition 5.10(2).
(2) Since $d_{f}(x) \leq f(x)$ for all $x \quad X$, then $d_{f}(x) * f(y) \leq f(x) * f(y) \leq f(x) * d_{f}(y)$.
(3) For any x, $y \quad X$, we have
$\mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{y})=\left(\mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right)$
$\left.=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) *\left(\left(\mathrm{~d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) * \mathrm{f}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})\right)\right)$
$=\left(\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y})\right) * 0=\mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{f}(\mathrm{y}) \leq \mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})$,
Which proves (3).
(4) Let $\mathrm{x}, \mathrm{y} \quad \operatorname{ker} \mathrm{d}_{\mathrm{f}}$, then $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=0=\mathrm{d}_{\mathrm{f}}(\mathrm{y})$, and so $\mathrm{d}_{\mathrm{f}}(\mathrm{x} * \mathrm{y}) \leq \mathrm{d}_{\mathrm{f}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{f}}(\mathrm{y})=0 * 0=0$ by (3), and thus $d_{f}(x * y)=0$, that is, $x * y \quad \operatorname{ker} d_{f}$, then $0=d_{f}(x) \leq f(x)$ by (1), and so $f(x) \quad X_{+}$, that is, $0 * f(x)=0$, and thus $f(0 * x)=f(x)$, which that $0 * x=x$, and so $x \quad X_{+}$, that is, ker $\mathrm{d}_{\mathrm{f}} \subseteq \mathrm{X}_{+}$.

Theorem 6.7. Let be monic of a commutative BCIK-algebra X. Then X is p-semi simple if and only if ker $d_{f}=\{0\}$ for every regular f-derivation d_{f} of X.

Proof.

Assume that X is p-semi simple BCIK-algebra and let d_{f} be a regular f-derivation of X . Then $\mathrm{X}_{+}=\{0\}$, and So ker $d_{f}=\{0\}$ by using Proposition 6.6(4), Conversely, let ker $d_{f}=\{0\}$ for every regular f derivation d_{f} of X. Define a self-map d_{f} of X by $d^{*}{ }_{f}(0)=f_{x}$ for all $x \quad X$. Using Theorem $5.9, d_{f}^{*}$ is an $f-$ derivation of X. Clearly, $\mathrm{d}_{\mathrm{f}}^{*}(0)=\mathrm{f}_{0}=0 *(0 * \mathrm{f}(0))=0$, and so $\mathrm{d}_{\mathrm{f}}^{*}$ is a regular f-derivation of X. It follows from the hypothesis that $\operatorname{ker} \mathrm{d}^{*}{ }_{\mathrm{f}}=\{0\}$. In addition, $\mathrm{d}_{\mathrm{f}}{ }_{\mathrm{f}}(\mathrm{x})=\mathrm{f}_{\mathrm{x}}=0 *(0 * \mathrm{f}(\mathrm{x}))=\mathrm{f}(0 *(0 * \mathrm{x}))=$ $f(0)=0$ for all $x \quad X_{+}$, and thus $x \quad$ ker d^{*}. Hence, by Proposition 6.6(4), $X_{+} \quad$ ker $d_{f}^{*}=\{0\}$. Therefore, X is p -semi simple.

Definition 6.8. An ideal A of a BCIK-algebra X is said to be an f-ideal if $f(A) \subseteq A$.
Definition 6.9. Let d_{f} be a self-map of a BCIK-algebra X. An f-ideal A of X is said to be d_{f}-invariant if
$\mathrm{d}_{\mathrm{f}}(\mathrm{a}) \subseteq \mathrm{A}$.
Theorem 6.10. Let d_{f} be a regular (r, l)-f-derivation of a BCIK-algebra X, then every f-ideal A of X is $\mathrm{d}_{\mathrm{f}}(\mathrm{A}) \subseteq \mathrm{A}$.

Theorem 6.10. Let d_{f} be a regular (r, l)-f-derivation of a BCIK-algebra X , then every f-ideal A of X is d_{f}-invariant.

Proof.

By Proposition 6.10(2), we have $\mathrm{d}_{\mathrm{f}}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \wedge \mathrm{d}_{\mathrm{f}}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x})$ for all $\mathrm{x} \quad$ X. Let $\mathrm{y} \quad \mathrm{d}_{\mathrm{f}}(\mathrm{A})$. Let $\mathrm{y} \quad \mathrm{d}_{\mathrm{f}}(\mathrm{A})$. Then $y=d_{f}(x)$ for some $x \quad$ A. It follows that $y * f(x)=d_{f}(x) * f(x)=0 \quad$ A. Since $x \quad A$, then $f(x)$ $f(A) \subseteq A$ as A is an f-ideal. It follows that $y \quad A$ since A is an ideal of X. Hence $d_{f}(A) \subseteq A$, and thus A is $d_{f}-$ invariant.

Theorem 6.11. Let d_{f} be an f-derivation of a BCIK-algebra X. Then d_{f} is regular if and only if every f ideal of X is d_{f}-invariant.

Proof. Let d_{f} be a derivation of a BCIK-algebra X and assume that every f-ideal of X is d_{f}-invariant. Then
Since the zero ideal $\{0\}$ is f-ideal and d_{f}-invariant, we have $d_{f}(\{0\}) \subseteq\{0\}$, which implies that $d_{f}(0)=$ 0.

Thus d_{f} is regular. Combining this and Theorem 6.10, we complete the proof.

7. Conclusion

Derivation is a very interesting and are of research in the theory of algebraic structures in mathematics. The theory of derivations of algebraic structures is a direct descendant of the development of classical Galosis theory. In this paper, we have considered the notation of f-derivations in BCIK-algebra and investigated the useful properties of the f-derivations in BCIK-algebra. Finally, we investigated the notion of f-derivations in a p-semisimple BCIK-algebra and established some results on f-derivations in a p-semisimple BCIK-algebra. In our opinion, these definitions and main results can be similarly extended to some other algebraic system such as subtraction algebras, B-algebras, MV-algebras, dalgebras, Q-algebras and so forth.

In our future study of f-derivation I BCIK-algebra, may be the following topics should be considered:
(1) To find the generalized f-derivations of BCIK-algebra,
(2) To find more result in f-derivation of BCIK-algebra and its applications,
(3) To find the f-derivations of B-algebras, Q-algebras, subtraction algebras, d-algebra and so forth.

References

1. Y. Imai, K. Iseki, on axiom systems of propositional calculi XIV, proc. Japan Academy, 42 (1966), 19-22.
2. K. Iseki, BCK - Algebra, Math. Seminar Notes, 4(1976), 77-86.
3. Y.B. Jun and X.L. Xin On derivations of BCI - algebras, inform. Sci., 159(2004), 167-176.
4. S Rethina Kumar, "Solvable Pseudo Commutators BCIK-Algebras', International Journal of Research Publication and Reviews Vol(3), Issue(2)(2021) Page 269-275, March 2021.
5. S Rethina Kumar, "t-Regular t-Derivations on p-Semisimple BCIK-Algebras" EPRA International Journal of Multidisciplinary Research. Volume 7, Issue 3, pp.198-209, March 2021.
6. M.A. Ozturk, Y. Ceven, and Y.B. Jun, "Generalized derivations of BCI-algbra", Honam Mathematical Journal, vol.31, no4, pp.601-609, 2009.
7. N.O. Al-Shehri, "Derivations of B-algebras", Journal of King Abdulaziz University, vol. 22, no. 1, pp.71-83, 2010.
8. S. IIbira, A. Firat, and Y.B. Jun, "On symmetric bi-derivations of BCI-algebras", Applied Mathematical Sciences, vol.5, no.57-60, pp.2957-2966, 2011.
9. J. Meng and Y.B. Jun, BCK - algebra, Kyung Moon Sa Co, Seoul, Korea. 1994.
10. S. Tanaka, A new class of algebra, Mathematics Seminar Notes 3 (1975), pp. 37-43.
