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Abstract
Our objective here is limited to the Stokes equations alone. The Stokes equations represent the linear portion of the Navier-
Stokes equation. We wish to show that, under reasonable conditions, these equations can be reformulated as an abstract
linear evolutionary equation ∂tu+Au = 0 on an appropriate Hilbert space. We will show, among other things that the
associated Stokes operator A is a positive, self adjoint operator with compact resolvent.
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1. Introduction
The Navier-Stokes equations are deferential equations which, unlike algebraic equations, do not explicitly establish a relation
among the variables of interest (e.g. velocity and pressure). Rather, they establish relations among the rates of change. For
example, the Navier-Stokes equations for simple case of an ideal fluid (inviscid) can state that acceleration (the rate of change
of velocity) is proportional to the gradient (a type of multivariate derivative) of pressure. They are one of the most useful sets
of equations because they describe the physics of a large number of phenomena of academic and economic interest. They
may be used to model weather, ocean currents, water flow in a pipe, flow around an airfoil (wing), and motion of stars inside
a galaxy. As such, these equations in both full and simplified forms are used in the design of aircraft and cars, the study of
blood flow, the design of power stations, the analysis of the effects of pollution, etc. Coupled with Maxwell’s equations they
can be used to model and study magneto hydrodynamics.

2. Preliminaries
Let Ω be a bounded open set in Rd , where d = 2 or 3, and assume that Ω is of class C2 . The Stokes equation on Ω are given

by

(1)
where the velocity u = (u1, ....., ud ) is a d-dimensional vector field on Ω, the pressure p is a scalar field on Ω, and the forcing
function f = f(t, x) is a known or given d-dimensional vector field on Ω. Let u(t, x) = (u1 (t, x), ....., ud (t, x)) be the velocity of
the fluid at (t, x) = (t, x1 , ....., xd ), t  [0, T], x  Ω, and  let p(t, x) denote the pressure at (t, x).

The objective is to solve for u = u(t, x) and p = p(t, x) so that u and p satisfy equation (1) in Ω, and u satisfies the initial
value problem

u(0, x) = u0(x), x  Ω. (2)
Furthermore, we assume that the Dirichlet boundary conditions

u(t, x) = 0, for x  ∂Ω and t > 0, (3)
are satisfied, where ∂Ω is the boundary of Ω.

There is the pressure term p and the conservation equation ∇·u = 0. Neither of these involve time derivatives. However, by
choosing the correct state space H, one address both of these matters: The divergence condition ∇· u = 0 is automatically
satisfied, and the pressure term p disappear!

We introduce the following function spaces:
(4)
(5)

(6)
Because of the conservation equation∇· u = 0, it is convenient to introduce the following function space.

(7)

The space 
0Z is a collection of divergence-free, smooth vector fields with compact support in Ω. It is a linear subspace of

both L2 = L2(Ω) and H1(Ω). Next we define
(8)
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(9)

The inner product < ·, · >H on H is precisely the L2-inner product < ·, · >L
2 , and the inner product < ·, · >V on V is the H1-

inner product, i.e., from the definition Sobolev space,

Hm(Ω) = Wm;p(Ω) = {u  Lp(Ω)| D  u  Lp(Ω) for all |α| ≤ m} . (10)

Let p = 2 and m = 1, we get

H1(Ω) = W1;2(Ω) ={u  L2(Ω)| D  u L2(Ω) for all |α| ≤ 1}, u  H1(Ω)
H1(Ω) ={∫Ω|u|2dx +∫Ω|∇u|2dx}.

It can be written as in terms of inner product

< u, v >V =< u, v >L
2 +Σ d

i 1 < Diu,Div >L2 , u, v  V. (11)

We define∥ ∇u∥2
2L

by

(12)
From the poincare  inequality, there is a constant c > 0 such that

∥u∥L
2 ≤ c∥∇u∥L

2 , for all u∈H 1
0 (Ω), (13)

Substituting the equation (12) in equation (11), we get

(14)

Substituting the equation (13) in equation (14), we get

(15)

In other words, the norm ∥∇u∥ is equivalent to the V-norm ∥u∥V on V . There is a characterization of H which will be useful.
In particular, one has

(16)
Indeed, the set

(17)

The set Z1(Ω) contains 
0Z However, in terms of L2-norm, the space 

0Z (Ω) is dense Z1(Ω). Therefore, the closures of these
two spaces in L2(Ω) are the same. Recall that if p and u are C1-functions on Ω, then

Since Ω is of class C2, the Gauss Divergence theorem implies that

Where n is the unit outward normal to the boundary ∂Ω. Consequently, we see that if ∇·  u=0 in Ω and u · n=0 on ∂Ω, then the
above equation becomes

Let P denote the orthogonal projection of L2(Ω) onto H. P is sometimes referred to as the Helmholtz, or the Leray,
Projection. One then has the following result.

Lemma: 2.1. Let Ω be an open, bounded set in R d of class C2. The H⊥, the orthogonal complement of H, satisfies
(20)
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Next we want to examine the stationary solutions of the Stokes equations, i.e., the solution of

(21)
With Dirichlet-boundary condition (3). The following result is proved in [2](Theorem3.11).

Lemma:2.2. Let Ω be an open, bounded set in Rd of class C2. Then there is a constant c > 0 such that, for every

f ∈ L2(Ω) ∩V and  p ∈ H1(Ω,R) that satisfy (21) with and one has

(22)
The Stokes operator A is defined by Au=P(−∆u) for u∈D(A). Where D(A)=H2(Ω)∩V . Thus, if (u,p) is the solution of
equation (21) given by the last Lemma, then one has

and

Applying the projection P on the above equation, we get
The key, to understanding equation  (1) then, is to project this equation into the space H by applying P.

then we obtain (23)

Note that Pu = u. Since ∇.u = 0 in Ω and as a result of a Dirichlet boundary conditions, one has u · n=0 on ∂Ω.
Therefore

Also note that the pressure term ∇p is missing in equation (23) because P∇p=0, by Lemma 2.1, while the pressure term does
not appear in equation (23), it has not been lost. Indeed, if u is given by equation (23), then one uses the equation (20)  to find
p, see [2]. We now have the following result:

Theorem:2.1. Let Ω be an open, bounded set in R d of class C2, and let A be the Stokes operator on Ω. Then the following
hold:

(1) The linear operator A is positive and self adjoint.
(2) The inverse A−1 is a compact linear operator on H.
(3) The operator A is a positive, sectorial operator and there exist eigenvalues satisfying (0 < a = λ1 ≤ λ2 ≤ λ3 ≤

...... ), and the corresponding collection of eigenvalues {e1,e2, ........} forms an orthogonal  basis for H.

Proof. First of all, we show that the Stokes operator A is sysmmetric; i.e., one has

(24)

where a(u,v) is the bilinear form

(25)

By applying Green’s formula
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Hence Stokes operator A is symmetric. Secondly, we show that the bilinear form a(u,v) is symmetric and positive. Indeed
from the definitions, one has

i.e., a is symmetric. From equation (15), then we obtain

Hence a(u,v) is positive. Thirdly, we show that Stokes operator A is self adjoint and positive. Indeed, if v ∈D(A∗), then there
is an f ∈H satisfying Pf =f and

since f ∈ H. It follows from Lemma 2.2, that there is a w ∈ D(A) satisfying Aw=f.
We claim that w=v. In order to show this, it suffices to show that

Let h be an arbitrary point in H. We then use Lemma 2.2, to find w ∈D(A) to satisfy Aw =h. One then obtains

It shows that Av = f. Hence D(A∗) ⊂D(A) and A is self adjoint. The positivity of A follows from equation (23).
Finally, we note that the inverseA−1 is a compact operator. Indeed, for f ∈H we let u∈D(A) be fixed so that Au=f, i.e.,
u=A−1f, Then equation (3.2.23) implies that

Since the imbedding H2(Ω) → L2(Ω) is compact, we see that A−1 is a compact operator.

3. Navier-Stokes Equations
The Navier-Stokes equations for an incompressible, viscious fluid motion, assume the form

(26)
on an open, bounded domain Ω in Rd of class C2, where d=2 or d=3.

The Stokes operator A arises from the study of linear problem, where the inertial term (u ·∇)u is set equal to zero to obtain
the Stokes equations

(27)
Recall that the Stokes operator arises when one projects equation (26) into the Hilbert space

for Dirichlet boundary conditions. For
periodic boundary conditions, one uses

(28)
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P denote the Helmholtz, or Leray, projection, i.e., the orthogonal projection of the orthogonal complement of H, is

Thus the pressure satisfies P∇p = 0 in Ω. We assume that the forcing function f =f(t) satisfies f ∈L∞(0,∞;H).
In this case one has Pf =f. By applying P to equation (25) one obtains

We will also use the interpolation inequality which states that if γ =θα+(1−θ)β, where α,β,γ ∈R, α≥β, and 0≤θ≤1. Then there
is a constant C>0 such that

TheHelmholtz projection P can be applied to the Navier-Stokes equations (26), as well,

(29)
Which is referred to as the Navier-Stokes (evolutionary) equation, where B(u,v) is the bilinear form

the pressure term p does not appear in equation (29) because P∇p=0. The pressure can be recovered by applying the
complementary projection (I−P) to equation to obtain

(30)

Where by assumption we have (I −P)f = 0. As shown in Lemma 2.1, if one finds a solution u=u(t) of equation (29) on some
interval I, then one can use equation (30) to solve for the pressure p. Since the pressure field p is completely determined by
the velocity field u, one sometimes refers to p as a slave variable.
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