A NEW APPROACH TO SOLVE A TRANSPORTATION PROBLEM

S.Saranya* Dr. G. Michael Rosario* *
*Research Scholar of Jayaraj Annapackiam College for Women (Autonomous) Periyakulam, Tamilnadu, India. **Associate Professor in Mathematics, Jayaraj Annapackiam College Women (Autonomous) Periyakulam, Tamilnadu, India.

Abstract

A new algorithm for a Transportation Problem (TP) is proposed for finding an optimal solution. The result is close to the optimal solution or nearest to the optimal solution obtained from various methods - NWCM, LCM, VAM, and MODI method. The feasible solutions and optimal solution derived from NWCM, LCM, VAM, MODI method and proposed method are compared. The proposed method is applied for finding an optimal solution for a TP directly and it avoids the degeneracy condition. The procedure to find the solution is illustrated with numerical examples.

Keywords: Transportation Problem (TP), NWCM, LCM, VAM, MODI Method, Proposed Method, Initial Basic

 Feasible Solution.
1. Introduction

The Transportation Problem (TP) is a special type of Linear Programming Problem and important part of logistics and supply chains. The problem basically deals with the determination of a cost plan for transporting a single commodity from a number of sources to a number of destinations. We are assuming that the total demand is equal to total supply. The basic Transportation Problem along with the constructive method of solution was originally developed by Hitchcock [7] in 1941. In the year 1947 T.C.Koopmans [9] made an independent study on "Optimum utilization of transportation system". Again in 1963 Dantzig [3] formulated the transportation problem as linear programming problem and also provided the solution method. The TP is applied in factories, warehouses, pipe line system and in projects which send water, oil or gas from supply stations to demanding customers.

Transportation problems are generally concerned with the distribution of a certain product from several sources to numerous localities at minimum cost. For obtaining an optimal solution for Transportation Problem it is required to solve the problem in two stages. In the first stage the Initial Basic Feasible Solution (IBFS) is obtained by using any one of the available methods such as North West Corner Method (NWCM), Matrix Minima Method or Least Cost Method (LCM) and Vogel's Approximation Method (VAM). Then in the second stage MODI method (Modified Distribution) is used to get an optimal solution.

In last few years P.Pandian et.al [16] and sudhaker et.al [15] proposed two different methods in 2010 and 2012 respectively, for finding an optimal solution directly. Recently, In 2012 Shweta singh, G.C.Dubey, Rajesh Shrivastava [14] followed by given various methods to find optimality of transportation problems. Reena G.patel and P.H.Bhathawala [11] have given a new global approach for solved Transportation Problem.

In this paper, a different approach using simple calculations is proposed to find IBFS of a Transportation Problem. The proposed method is illustrated with examples and results are compared with the solutions obtained by various methods. The paper is organized as follows. Algorithm of the Proposed Method (PM) is given Section 2. Proposed Method is illustrated in Section 3. Analysis and conclusion is given in section 4.

2. Algorithm for Proposed Method

Step 1: Construct the transportation table from give transportation problem.
Step 2: Select the minimum odd cost from the transportation table.
Step 3: Subtract selected least odd cost only from odd cost in matrix. Now there will be at least one zero and remaining all cost become even. Allocate maximum possible supply or demand at the place of zero, and delete the row or column where supply or demand zero.
Step 4: Determine the penalty cost for each row and column by subtracting the lowest cell cost in the row or column from the next lowest cell cost in the same row or column. Select the row or column with the highest Penalty cost (breaking tie choosing the lowest-cost cell). Allocate as much as possible to the feasible cell with the lowest transportation cost in the row or column with the highest penalty cost.
Step5: Repeat steps 4, 5 and 6 until all requirements have been meet.

Step6: Compute total transportation cost for the feasible allocations using the original balanced transportation cost matrix.
3. Illustration

Example: 1
Step1
Consider the following cost minimizing transportation problem
Table: 1

	D1	D2	D3	D4	Demand
S1	11	13	17	14	250
S2	16	18	14	10	300
S3	21	24	13	10	400
Supply	200	225	275	250	950

Step 2: The minimum odd cost is $\mathbf{1 1}$
Step 3
Table: 2

	D1	D2	D3	D4	Demand
S1	o 200		6	14	250
S2	16	18	14	10	300
S3	10	24	2	10	400
Supply	200	225	275	250	950

The column D1 is deleted.

Step 4

Table: 3

	D2	D3	D4	Demand	Column Penalty
S1	2	6	14	50	4
S2	18	14	10	300	4
S3	24	2	10	400	8
Supply	225	275	250		
Row Penalty	16	4	0		

Maximum penalty is 16 which correspond to D 2 .
Table: 4

The row $\mathbf{S} \mathbf{1}$ is deleted.

	D2	D3	D4	Demand
S1	50	6	14	50
S2	18	14	10	300
S3	24	2	10	400
Supply	225	275	250	

Step 5 (i)
Table: 5

	D2	D3	D4	Demand	Column Penalty
S2	18	14	10	300	4
S3	24	2	10	400	8
Supply	175	275	250		
Row Penalty	6	12	0		

Maximum penalty is 12 which correspond to D3.
Table: 6

The column D3 is deleted.

	D2	D3	D4	Demand
S2	18	14	10	300
S3	4	$\frac{275}{2}$	10	400
Supply	175	275	250	

Step 5 (ii)
Table: 7

	D2	D4	Dema nd	Penalty cost	
S2	18	10	300	4	
S3	24	10	125	14	
Supply	225	250			
Penalty cost	6	0			

Maximum penalty is 14 which correspond to S3.
Table: 8

	D2	D4	Demand
S2	175	125	300
	18	10	
S3	24	125	125
Supply	225	250	

The cost is allocated in S3.The row S3 is deleted and remaining cells are allocated.

Step 6

Table: 9

	D1	D2	D3	D4	Demand
S1	200	$\begin{array}{r} \hline 50 \\ 13 \end{array}$	17	14	250
	11				
	16	175	14	125	
S2		18		10	300
	21	24	275	125	
S3			13	10	400
Supply	200	225	275	250	950

The total cost $=11 \times 200+13 \times 50+18 \times 175+10 \times 125+13 \times 275+10 \times 125$

$$
=12075
$$

Example: 2

Consider the following cost minimizing transportation problem
Table: 10

	D1	D2	D3	D4	Demand
S1	13	25	12	21	18
S2	18	23	14	9	27
S3	23	15	12	16	21
Supply	14	12	23	17	66

By applying proposed method allocations obtained are given in Table 11.
Table: 11

	D1	D2	D3	D4	Demand
S1	13	25	$1 2 \longdiv { 4 }$	21	18
S2	18	23	1410		27
S3	23	$\begin{array}{l\|l} \hline 15 & 12 \\ \hline \end{array}$	$\begin{array}{l\|l} \hline & 9 \\ 12 \end{array}$	16	21
Supply	14	12	23	17	66

The total transportation cost is 811
Example: 3
Consider the following cost minimizing transportation problem

	D1	D2	D3	Demand
S1	0	2	1	6
S2	2	1	5	7
S3	2	4	3	7
Supply	5	5	10	20

By applying Proposed Method allocations obtained are given Table 13
Table: 13

	D1	D2	D3	Demand
S1	0^{5}	2		6
S2	2	$1 \longdiv { 5 }$	$]_{5}$	7
S3	2	4		7
Supply	5	5	10	20

The total transportation cost associated with this allocation is 37

Research Paper

Example: 4

Consider the following cost minimizing transportation problem
Table: 14

	D1	D2	D3	D4	Demand
S1	13	18	30	8	8
S2	55	20	25	40	10
S3	30	6	50	10	11
supply	4	7	6	12	29

By applying Proposed Method allocations obtained are given in Table 15
Table: 15

	D1	D2	D3	D4	Demand
S1	4	18	30	4	8
	13			8	
S2	55	4	6	40	10
		20	25		
S3	30	3	50	8	11
		6		10	
Supply	4	7	6	12	29

The total transportation cost associated with this allocation is 412 .

4. Analysis and Conclusion

Initial Basic Feasible Solution for the above four problems given in section 3 using North West Corner Method (NWCM) ,Least Cost Method (LCM) and Vogel's Approximation Method (VAM) and Optimal solution using Modified Distribution (MODI) are calculated and given in the following Table 16

Table: 16

Problem	Problem Dimension	Proposed method	NWCM	LCM	VAM	MODI Method
$\mathbf{1}$	3×4	12075	12200	12825	12075	12075
$\mathbf{2}$	3×4	811	1052	881	811	811
$\mathbf{3}$	3×3	37	42	37	37	33
$\mathbf{4}$	3×4	412	484	516	476	412

Conclusion

Comparing the values of Transportation cost in the above Table (16) the Proposed Method provides a feasible solution which is equal to the optimal solution or nearest to the optimum solution and it is obtained in fewer iterations. The proposed algorithm is easy to understand and apply. It will be very useful for the decision makers who are dealing with logistic and supply chain problems.

References

1. Arsham.H and Khan AB (1989). A Simplex- type, Algorithm for General Transportation problems; An alternative to stepping-stone. Journal of Operational Research Society 40(6)581- 590.
2. Charnes, Cooper (1954). The Stepping-Stone Method for explaining linear programming. Calculation in Transportation Problems. Management Science 1(1)49-69.
3. Dantzig GB (1963). Linear Programming and Extensions, New Jersey: Princeton University press.
4. Goyal SK (1984). Improving VAM for unbalanced Transportation Problem, Journal of Operational Research

Society 35(12) 1113-1114.
5. Gass S (1964). Linear Programming, Mc-Graw-Hill New York.
6. Garvin WW (1960). Introduction to Linear Programming, Mc-.Graw-Hill, New York.
7. Hitchcock FL (1941). The distribution of a product from several sources to numerous localities, Journal Of Mathematical Physics 201941 224-230.
8. Kirca and Statir (1990). A heuristic for obtaining an initial solution for the Transportation Problem, Journal of operational Research Society 41(9) 865-867.
9. Koopmans TC (1947). Optimum Utilization of the Transportation system proceeding of the international statically conference, Washington D.C.
10. Ping Ji, Chu $\operatorname{KF}(2002)$. A dual-Matrix approach to the Transportation Problem. Asia- PacificJournal of Operation Research 19(1) 35-45.
11. Reena, G.patel and P.H.Bhathawala (2014). A New Global Approach to a Transportation problem. International journal of Engineering Technology, Management and Applied science.vol.2.Issue 3, ISSN 2349-4476.
12. Reinfeld N.V,Vogel WR (1958)., Mathematical Programming New Jersey Prentice- Hall, Englewood Cliffs.
13. Shore H.H (1970). The Transportation Problem and the Vogel Approximation Method, Decision Sciences 1(3-4) 441-457.
14. Shweta Singh,G .C.Dubey and Rajesh shrivastava (2012).A Various Method to solve the optimality for the transportation problem. International Journal of Mathematical Engineering and science.vol 1.Issue 4.ISSN:22776982.
15. Sudhakar VJ, Arunnsankar N, Karpagam T (2012). A new approach for find an Optimal Solution for Trasportation Problems, European Journal of Scientific Research 68 254-257.
16. P.Pandian and G. Natarajan, A New Method for Finding an Optimal Solution for Transportation Problems, International J. of Math. Sci \& Engg. Appls, vol 4, p. 59-65 (2010).

