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Abstract 
Motivated by some results on derivations on rings, and the generalizations of BCK and BCI algebras, in this paper, we define 

derivations on BP-algebras and investigate some important results. 
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1. Introduction 

BCK and BCI algebras are two new classes of algebras introduced by Imai and Isaki [3,5].In [1], S.S. Ahn and J.S. Han 

introduced the notion of BP-algebras. In 2004, Y.B. Jun and X.L. Xin [4] introduced the notion of derivations on BCI 

algebras. Since then, many authors worked on the notion of derivations on several algebras such as      d-algebras [6,7] and 

TM-algebras [2]. Motivated by this paper we introduce the notion of derivations on BP-algebras. 

 

2. Preliminaries 

In this section we recall some basic definitions that are required in our work. 

 

Definition2.1. [3] Let X be a set with a binary operation and a constant 0.Then  is called a BCK -algebras if it 

satisfies the following axioms: 

1. x x =0  

2. 0 x = 0  

3.  

4. (x (x  y)  y =0  

5.   x  y =0 and y  x =0 imply x = y   x, y, z  X 

 

Definition2.2. [4] Let X be a set with a binary operation* and a constant 0.Then  is called a BCI-algebra if it 

satisfies the following axioms: 

1.  =0  

2.  

3. =0  

4. and y x =0 imply x = y    

 

Definition2.3. Let x be a BCI-algebra. Two elements x and y in X are said to be comparable if or y  Here  

y if and only if Also we define  by . 

 

Definition2.4. [7] A d -algebra is a non-empty set X with a constant 0 and binary operation  satisfying the following 

axioms: 

1.  

2.  

3. and .  

 

Definition2.5. [1] Let X be a set with a binary operation  and a constant 0. 
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  Then  is called a BP-algebra if it satisfies the following axioms. 

1.  

2.  

3.  

 

Example 2.6. Let X = {0, 1, 2, 3} , be a set with the following cayley table 

 

 
0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 

 

Then  is a BP - algebra. 

 

Definition2.7: Let X be a d-algebra. A map is a left - right derivation (briefly, (l, r) - derivation) on X, if it 

satisfies the identity  

 

 
If  satisfies the identity  

 

 
 

Then  is called a right - left derivation (briefly, (r, l) - derivation) on X. 

If  is both an (l,r) and an (r,l) - derivation, then is called a derivation on X. 

 

3. Derivations on BP-Algebra 

In this section, we define the notion of derivations and composition of derivations on BP - algebras and prove some results. 

Let (X,  be a BP - algebra. As in the case of BCI - algebras, we use the notion 

We start with the definition of derivation. 

 

Definition3.1: Let X be a BP-algebra. A map is a left - right derivation (briefly, (l, r)-derivation) on X, if it 

satisfies the identity  

 

 
If  satisfies the identity  

 

 
 

Then  is called a right-left derivation (briefly, (r, l) - derivation) on X. 

If  is both an (l, r) and an (r, l)-derivation, then is called a derivation on X.  

 

Example3.2: Consider the BP - algebra given an example. ( refer example 2.6) 

(1) A self map be defined by 
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then   is a derivation on X. 

(2) A self map be defined by 

then   is a derivation on X. 

(3) A self map be defined by 

then   is a derivation on X. 

(4) A self map be defined by 

then   is a derivation on X. 

 

Definition3.3:   Let  be a BP-algebra. A self map  is said to be regular if   

 

Example3.4:  Let  be a BP-algebra in example (3.2),(4) is a regular derivaion on X. 

One can easily prove the following. 

 

Proposition3.5: Let X be a BP-algebra such that  Let be a derivation on X. 

(1) If is a (l,r) - derivation on X, then   

(2) If is a (r,l) - derivation on X, then   

 

Proposition3.6:  Let  be a self map of a BP - algebra X. Then 

 

  

Proof: 

Since  is a derivations on X,  is a (l, r) - derivation on X, Hence the proposition 3.5 

 

                        

              

 

  Again on X. 

 

                               

  

Then . 
 

Proposition3.7: Let  be a BP - algebra. Let be a derivation. 

(1)  If  then  is regular. 

(2) If then  is regular. 

 

Proposition3.8: Let  a self map of a BP - algebra X. If  is regular (r,l) -derivation on X, then  is a identity map on X. 

Proof: 

Given  is regular (r,l) - derivation on X. 

 

                                     =(  
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This shows that  is the idendity map on X. 

 

Definition3.9: Let X be a BP - algebra and θ1, θ2 be two self maps of X. We define 

 

θ1  θ2: X  

 

Example 3.10: Let  be a BP-algebra with the following cayley table. 

       

  

 

  

 

  

 

 is a (l,r) - derivation on X. 

 is a (l,r) - derivation on X.                                     

 

 is a (l,r) - derivation on X. 

 

Similarly, Composition of two (r, l) - derivation is also a (r, l ) - derivation on X  The following result gives that the 

composition of two (l, r) - derivations are again a (r, l) - derivation. 

 

Proposition3.11: Let a BP - algebra. Let be two left-right derivations on X.  

Then  is also a left - right derivation on X. 

Proof: 

 

 

                                                   

(using (l, r) - derivations on X) 

 

                      (  

                                     ) 

                                                             ) 

 

Hence 

 
 

Proposition3.12: Let a BP-algebra. Let are (r, l) - derivations on X. Then  is also a (r, l) - 

derivation on X. 

Proof: 

 

 
                                               (using(r,l)-derivations on X) 

                                                      = )                   (  

          

* 0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 
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                                      ) 

                     

                                           
Hence  

 

Theorem3.13 

Let a BP-algebra  be two derivations on X,  is also a derivation on X. 

 

Theorem3.14 

Let a BP-algebra and   are derivations on X. Then  . 

 

In the following we define the point wise product of two derivations. 

 

Definition3.15 

Let X be a BP-algebra and  be two self maps of X, we define  

 
 

Theorem3.16 

Let a BP-algebra and  are derivations on X. Then     

   . 

Proof: 

Let a BP-algebra  be two derivations on X. 

 Since is a (l,r) - derivations on X. 

 

 

                           

                                                                       
                   

                                                        

 
Also we have (r,l) - derivation on X.  

  

 
 

                                                  =  

                   

………………..(2) 

From (1) and (2) we get, 

    

Putting  
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4. Left Derivations 

In this section we define the notion of the left derivations on BP - algebras, and we prove some results on left derivations on 

BP-algebras. 

 

Definition4.1 

Let X be a BP-algebra. By a left derivation on X, we mean a self map  of X satisfying  

 

 
 

Example4.2 
Let X={0,1,2} be a BP-algebra with the following cayley table  

* 0 1 2 

0 0 2 1 

1 1 0 2 

2 2 1 0 

 

A self map  be defined by  

Then X is an left derivation on BP-algebra. 

 

Proposition4.3: Let  be a left derivation on a BP-algebra X. Then for all  

(1) . 

(2)   

 

Proposition4.4: Let  be a left derivation on a BP-algebra X. Then  is regular, if and only if 

 

Proof: 

Now,                                                                  

 
                        

 

Let  be regular. Since  

Which implies  

Conversely, assume that  

 
Hence is regular. 

 

Proposition4.5: Let X be a BP-algebra and  be a left derivation on X, then 

 

 
 

Proof: 

Let X be a BP-algebra. 
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Also,  

 

Definition4.6 

Let X be a BP-algebra and be two self maps of X. We have  

 
 

The following theorem shows that the composition of two left - derivations is again a left derivation on X. 

 

Theorem4.7 

Let  be a BP-algebra. Let  be two derivations on X, then  is also a left derivation on X. 

Proof: 

Given  is a left derivation on X. 

 

Similarly, is a left derivation on X. 

 
Now, 

 

         

           
                                                                            

                                                                      
Hence  is a left derivation on X. 

We observe that the composition of regular left derivations are commutative as seen below. 

 

Theorem4.8 

Let and   regular left derivations on X. 

Then . 
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