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Abstract 

In this paper a mathematical model is presented which describes the dispersion of a poorly conducting couple stress 

fluid in laminar flow between two impermeable rigid parallel plates embedded with segmented electrodes.  By using 

generalized dispersion model, the validity of time-dependent dispersion co-efficient is widened.  The effect of couple 

stress parameter ‘a’ and electric number ‘We’ on the most dominant dispersion coefficient is studied.  The exact 

solution for the dimensionless mean concentration distribution is obtained as a function of dimensionless time, axial 

distance and couple stress parameter.  The results of pure convection are also reported.  It is shown that the effect of 

couple stress parameter is to decrease the magnitude of dispersion coefficient thereby increasing the concentration 

distribution whereas increase in electric number, increases the dispersion coefficient thereby decreasing the 

concentration distribution.   

 

Keywords: Generalized Dispersion, Couple Stress, and Poorly Conducting Fluid. 

 

1.  Introduction 

The mathematical models involving dispersion phenomena are necessary and indispensable tools to facilitate the 

decision making process for citing of industrial and residual complexes and for the purpose of emergency 

response management and impact assessment studies. On a regular basis, especially in developing countries like 

India it is not feasible to operate the conventional and expansive observational network to observe the 

concentration of pollutants originating from various vulnerable locations particularly in biomedical engineering 

process. Dispersion of pollutants has been affected by physical, chemical and mechanical nature of waste 

materials, the location of the pile of waste and the nature of terrain downwards from the stack. Using Fick’s law, 

the concentration distribution of pollutants due to above waste material is obtained in the form of concentration 

equation in the mathematical model of dispersion. To study the dispersion, various models are identified as 

Taylor’s (1953) dispersion model valid for large time, Airs(1956) dispersion model which is improvement over 

Taylor’s dispersion model, Generalized plume/puff model etc. However these models have inherent limitations 

like applicable to complex terrain, accountability of realistic flow, low and variable flow conditions. Further the 

solution in the analytical models can be obtained only for the simplest form of flow conditions. Therefore in this 

paper we use generalized dispersion model which is so general valid for all time that we can obtain the results of 

other dispersion models. 

 

We study an unsteady dispersion in a couple stress poorly conducting fluid in the presence of a transverse electric 

field with the motivation of understanding the haemolysis caused by artificial organs made of metals in 

biomedical engineering. Poorly conducting fluid means fluid whose electrical conductivity is a strong function of 

temperature, concentration and combination of both temperature and concentration and increases with 

temperature with electrical conductivity 1 .  The difference in temperature produces difference in 

conductivity.  This difference in conductivity releases the free charges, resulting in induced electric field iE


.    In 

addition to these there may be an applied electric field aE


due to embedded electrodes of different electric 

potentials at the boundaries.  The total electric field E


namely the sum of induced and applied electric fields 

ai EEE


+=  produce a current which acts as sensing.  This total electric field together with distribution of 



 
 

IJMDRR 
E- ISSN –2395-1885 

ISSN -2395-1877 

Research Paper 
  Impact Factor: 6.089 
Peer Reviewed Monthly Journal 
www.ijmdrr.com 

International Journal of Multidisciplinary Research Review, Vol.6, Issue-7,   July-2020,  Page -   13 

 

 

charges produces an electric force Ee


 , which acts as actuator. Sensing and actuation are two important 

properties of smart materials. 

 

The effective functioning of microfluidic devices in electronics, electrical and mechanical engineering involving 

fluids, particularly those having vibrations and petroleum products containing organic, inorganic, and other 

micro fluidics, requires the understanding and control of stability of parallel fluid flows. These substances, 

dissolving in the fluid, make the fluid poorly conducting. The electrical conductivity σ of such poorly conducting 

fluidics, increases forming micro polar fluid. According to Eringen (1966), the micro polar fluids may be 

regarded as non-Newtonian fluids. These freely suspended particles in fluid spin, producing micro rotation. 

Fluids with anti-symmetric stress are known as micro polar fluids.  Couple stress fluids are the particular case of 

micro polar fluids wherein, unlike most micro polar fluids, there is a mismatch between the spin of the 

suspension and the vorticity of the suspending fluid. 

 

Rudraiah et al (2005, 2006) have shown that self-generated electric field reduces the concentration of RBCs and 

hence increases dispersion.  Siddeshwar et al (1989) have studied the effects of couple stress and magnetic field 

on unsteady convective diffusion in a rectangular channel. The study of dispersion in a  poorly conducting fluid 

have been done by Rudraiah et al (2014, 2015, 2018) and Rudraiah et al (1986) have studied the effect of couple 

stress on the dispersion of erythrocytes in a channel bounded by rigid walls and showed that the couple stress 

augments haemolysis.    Therefore, in a study involving the control of haemolysis it is important that the 

combined effect of couple stress and poorly conducting nature have to be taken into account.  The results so 

obtained are useful in the design of efficient artificial organs free from impurities. Therefore, the objective of this 

paper is to consider these effects in the study of the unsteady convective diffusion of RBCs in the physiological 

fluid modeled as poorly conducting couple stress fluid, using the Generalized Dispersion approach of Gill and 

Sankarasubramanian (1970) and compare our results with the results obtained by Rudraiah et al (2011) where 

they have studied electro hydrodynamic dispersion of poorly conducting couple stress fluid bounded by porous 

layers.  To achieve this objective the paper is planned as follows.  The required basic equations, the boundary and 

initial conditions are specified in section 2.  The generalized dispersion coefficient is determined in section 3.  

Results and Discussions are reported in section 4.  We found that an increase in the couple stress parameter and 

decrease in electric number, decreases the axial dispersion coefficient and hence preserves the accumulation of 

RBC thus preventing haemolysis.  

 

2. Mathematical Formulation 

We assume the flow of a poorly conducting couple stress fluid to be laminar, fully developed and unidirectional 

with a uniform axial pressure gradient. In the absence of external constraints, the basic equations following 

Rudraiah et al (2011) and the boundary and initial conditions are: 
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Basic Equations for the flow is 
2 4

2 4
0 e x

p u u
E

x y y
  

−  
= + − +

                                                                                                   

(2.1) 

u is velocity in the x-direction in the free flow, p the pressure,   the viscosity of couple stress fluid,   the 

couple stress coefficient in the free flow  

The mass balance equation in a fully developed flow is 





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


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+




=


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C
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C
u

t

C

                                                                                            

(2.2)

  
where C is the concentration, D the diffusion co-efficient. 

The boundary conditions on the velocity are 

 u=0 at y h=                                                                                                                                    (2.3.1)                                       

2

2
0

d u
at y h

dy
= =                                                                                                                     (2.3.2)                                   

The boundary conditions on concentration are 

C(0,x,y) = C0  for  
sxx )21(                                                                                                         (2.4.1)            

C (0, x, y) = 0 for 
sxx )21(                                                                                                        (2.4.2)

  
0),,( =




hxt

y

C

                                                                                                                               

(2.4.3) 

 0),,( =−



hxt

y

C

                                                                                                                            

(2.4.4)  

0),,(),,( =



= yt

y

C
ytC                                                                                                         (2.4.5) 

C(t, x, y) = finite.                                                                                                                 (2.4.6)   

where  C0 is the concentration of the initial slug input of length sx  and (2.4.1 & 2.4.2) represent the initial 

concentration, (2.4.3 & 2.4.4) specifies that there is no transfer of mass flux at the walls, and (2.4.5 & 2.4.6) 

specifies that the concentration does not reach points far away downstream.  

We now introduce the following dimensionless variables in to (2.1), (2.2), (2.3) and (2.4)                   

u

u
U = ,

y
Y

h
= , 

hPe

x
X = ,  

0C

C
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tu

L
 = 2 


=

2
2 h

a



=   

0
2

e
e

V

h


 =

 
 
 

, x
x

E
E

V

h

 =
 
 
    

(2.5)                                                          

where u  is the average velocity of the flow.    

 

The dimensionless basic velocity equation for the flow introducing    
2

0 0 (1 )
( 1)

2( )

Y

e x

PeX e PeX Y
E

e e



 

  
 

−

−

−
= + 

−
following Rudraiah et al (2011) is given by 

2

4 2
2 2

1 24 2
( )

d U d U
a Ka B B B Y

dY dY
− = − − +                                                                                           (2.6)                                                                  

The dimensionless concentration equation is given by 
2 2

2 2 2

1
U

Pe

   

   

   
+ = −

                                                                                                        

(2.7)
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where 

2

0
1 2,

2

dp WePe X
B B

dX


= = ,




=l , lha =  is the couple stress parameter, DK = is the ratio of 

mass diffusion to kinematic viscosity,
 

 =  , ( ) 22

0 uhVWe =  is the electric number, Pe )( Dhu=  is 

the Peclet number, ( ) UUUU −=
(non-dimensional velocity in a moving coordinate) and ( ) LX  −=  is 

the dimensionless axial coordinate moving with the average velocity U . 

                                                                       

 

The non-dimensional boundary conditions on velocity and couple conditions are  

U = 0 at  1Y =                                                                                                                                        (2.8)    
2

2
0 1

d U
at Y

dY
= =                                                                                                                  (2.9) 

The dimensionless initial and boundary conditions for   are:   

1),,0( =YX
 
for ( ) sxx 21

 
0),,0( =YX for ( ) sxx 21   

0)1,,( =



X

Y



                                                                                                                          (2.10)                        

0)1,,( =−



X

Y



      

0),,(),,( =



= Y

Y
Y 


                                

 3. Generalized Dispersion Coefficient:                                                          

 

The solution of equation (2.1) using (2.3.1) is 

2 21 2 2

1 2 32 2
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The solution of equation (2.2) is written as a series expansion in the form (Using Gill and Sankarasubramanian 

1970) 

1
( , , ) ( , ) ( , )

k

m

m k kk
Y f Y


     





=


= +


                                                                                   (3.2)  
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where 

1

1

1

2
m dY 

−

=   the dimensionless cross sectional average concentration.  

We now assume that the process of distributing   is diffusive in nature right from time zero (unlike the models 

of Taylor (1953) Aris (1956) Lighthill (1969)). One can introduce the Generalized dispersion model with time-

dependent dispersion coefficient as 

 
1

k

m m

k k
k

K
 

 



=

 
=

 
                                                                                                                (3.3)                  

Equation (3.3) is solved subject to the conditions 

( ) ( ) sm X211,0 =  ,                                                                                                      (3.4.1) 

( ) ( ) sm X210,0 = 
                                                                                                      

(3.4.2) 

( ) 0, =m                                                                                                                         (3.4.3) 

The most dominant dispersion coefficient following Gill and Sankarasubramanian (1970) is                                                                                 
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where 
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We note that Eq. (3.3) has no physical meaning as it stands. We, however, found that 3 4( ), ( )K K  and so on 

are all zero’s.  

Thus 
2

2

2
X

K mm




=



 




                                                                    (3.7)                                                                                                         

which is the usual diffusion equation. 

This form, though similar to the Taylor’s (1953) model, differs from it due to the fact that the most dominant 

dispersion coefficient )(2 k  is time dependent.   

 

It will be useful if we have an estimate of the separate contributions of diffusion and pure convection on 

dispersion coefficient. To that end we now evaluate the contribution of pure convention, the result of which 

cannot be obtained from the above general case. Following the earlier procedure )(2 k for pure convection (i.e. 

neglecting the diffusion term in equation (3.5), is given by  
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The exact solution is given by 
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20
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21
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0

x zerf x e dz


−=          (3.9)                                                      

4. Results and Discussions 

Using generalized dispersion model of Gill and Sankarasubramanian (1970) the unsteady convective diffusion in 

a couple stress poorly conducting fluid bounded by impermeable rigid boundaries is studied. The most dominant 
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dispersion co-efficient given by (3.5) is computed for different values of couple stress parameter ‘a’, electric 

number ‘We’ and the dimensionless time . The results are graphically represented in figures (1) and (2). The 

parameter ‘a’ which depends on the size of suspended particles in physiological problems, greatly influences the 

dispersion co-efficient because it can be regarded as the characterization of the interaction of fluid particles with 

the geometry of the channel.  From fig. 1 we note that the effect of couple stresses on the dispersion co-efficient 

is prominent for small values of ‘a’ as the small values of ‘a’ corresponds to either to a suspended molecule with 

a long chain or to a small width of the channel. The latter is important to explain the rheological abnormalities of 

blood flow through a channel of small width.  It shows that the dispersion coefficient decreases with an increase 

in couple stress parameter ‘a’ and increases with an increase in electric number ‘We’.  Initially 2K  increases 

gradually up to the value  = 1 and remains uniform for values of   greater than 1.  In this figure, the result for 

We = 0 corresponds to those given by Rudraiah et al (1986) and result for →   corresponds to Rudraiah et al 

(2011) for permeable boundaries.   

  

The transport of major metabolizes (such as sugars and amino acids) is rather slow and convective transport 

plays a major role in accelerating them. Therefore, we have computed m  given by (3.5) and the results of the 

variation of mean concentration m  with axial distance x for a fixed  are plotted in figures (3) and (4). These 

figures reveal a marked variation of m  with time and the effect of ‘a’ is to decrease the concentration 

distribution, a result that is true for combined convection plus diffusion (C+D) and pure convection(C).Figures 

(5), (6), (7) and (8) represent the variation of mean concentration m of a tracer along the pressure gradient, at a 

given point, with  for different values of ‘a’, ‘We’ and for a fixed x. In figures (5) and (6), the observation point 

is inside the concentration slug whereas in figures (7) and (8), it is outside. In figures (5) and (6) the observation 

point is close to the entrance and the influence of ‘a’ and ‘We’ on m  is negligible, also pure convection has a 

major contribution to m . From figures (7) and (8), it is clear that the effect of pure convection is decreased by 

the same magnitude when the observation point gets farther and farther away from the entrance. We see that the 

dispersion (molecular diffusion and convection) is faster, i.e. the parabolic nature of m  with  at a fixed x/h if 

the observation point is far away from the entrance. In these figures we note that m  for convection and 

diffusion(C+D) and m  for pure convection(C) increase with a decrease in ‘a’ and ‘We’ and for small values of 

, mcd curve is above mc . In other words the couple stress parameter significantly influences m .  

Conclusions:   

(i) The couple stress are operative only for small values of ‘a’ and the present results reduce to Newtonian fluids 

in the limit of a→. 

(ii) Taylor’s dispersion model(1953) forms a particular case of the generalized dispersion model for asymptotic 

values of .  

(iii) Results of Rudraiah et al (1986) form a particular case of the present study for We=0 and for large values of 

 , the results of Rudraiah et al (2011) reduce to those of present study. 
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