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Abstract
This paper analyzes Adomian decomposition method and the Homotopy perturbation method as two powerful methods which
consider the approximate solution of a viscous flow and heat transfer over a nonlinearly stretching sheet as an infinite series
usually converging to the accurate solution. The paper also discusses theoretical analysis of the two methods which
compared with numerical solution.
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1. Introduction
The study of two-dimensional boundary layer flow due to a stretching surface is important in a variety of engineering
applications such as cooling of an infinite metallic plate in a cooling bath, the boundary layer along material handling
conveyers, the aerodynamic extrusion of paper and plastic sheets. In all these cases, a study of flow field and heat transfer can
be of significant importance since the quality of the final product depends on skin friction coefficient and surface heat
transfer rate.

The problem of heat transfer from a boundary layer flow driven by a continuous moving surface is of importance in a number
of industrial manufacturing processes. Several authors have been analysed in various aspects of the pioneering work of
Sakiadis [14,15]. Crane [7] has investigated the steady boundary layer flow due to stretching with linear velocity.Vleggaar et
al. [17] have analysed the stretching problem with constant surface temperature  and Soundalgekar et al. [16] have analysed
the constant surface velocity.

Perturbation techniques are based on the existence of small or large parameters, the so-called perturbation quantity.
Unfortunately, many nonlinear problems in science and engineering do not contain those kinds of perturbation quantities.
Therefore, many different methods have recently introduced some ways to eliminate the small parameter. One of the semi
exact methods which do not need small parameters is the Homotopy perturbation method.

The Homotopy perturbation method was developed and improved first by He in 1998.The method yields a very rapid
convergence of the solution series in most of cases. The HPM proved its capability to solve a large class of nonlinear
problems efficiently, accurately, and easily with approximations convergence very rapidly to solution. Usually, few iterations
lead to high-accuracy solution.

Recently, this method is being employed for many researches in engineering sciences. He’s Homotopy perturbation method
is applied to obtain approximate analytical solutions for the motion of a spherical particle in a plane couette flow Jalaal et al.
[16]. Jalaal et al. [17] showed the effectiveness of HPM for unsteady motion of a spherical particle falling in a Newtonian
fluid. Ghotbi et al. [18] used HPM to approximate the solution of the ratio-dependent predatorprey system with constant
effort prey harvesting.  Homotopy perturbation method is also used for solving nonlinear MHD Jeffery Hamel problem by
Moghimi et al. [19]. Recently, Ganji et al. studied the steady-state flow of a Hagen-Poiseuille model in a circular pipe and
entropy generation due to fluid friction and heat transfer using HPM [20].

2. Formulation of the Problem
We consider the flow of an incompressible viscous fluid past a flat sheet coinciding with the plane y = 0, the flow being
confined to y > 0. Two equal and opposite forces are applied along the x-axis so that the wall is stretched keeping the origin
fixed. The basic boundary layer equations that govern momentum and energy respectively are
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subject to the boundary conditions are
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wT T at 0;y  T T as y
where (x,y) denotes the Cartesian coordinates along the sheet and normal to it, u and v are the velocity components of the
fluid in the x and y directions, respectively, and v is the kinematic viscosity. C and n are parameters related to the surface
stretching speed. cp and  are the specific heat of the fluid at constant pressure and the thermal diffusivity respectively.

The equation of continuity is satisfied if we choose a stream function ψ(x, y) such that

u , v .
y x

 
 
 

The mathematical analysis of the problem is simplified by introducing the following dimensionless similarity variables:
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Substituting (5) into (2) and (3), we obtain the following set of ordinary differential equations:

 2 2
''' '' ' 0

1

n
f ff f

n
     

(6)

 2'' ' '' 0Prf PrEc f    (7)

The boundary conditions (4) now become
0 0 1 1

0 0

f , f ' ,

f ' ,

    
   

(8)

where the primes denote differentiation with respect to 
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
is the Eckert number, Pr




  
 

is the Prandtl number  Further, the constants ,wT T denote the

temperature at the wall and at a large distance from the wall, respectively.

3. Adomian Decomposition Method
To solve the system of coupled ODEs using Adomian decomposition method, rearranging (6) and (7) as follows

2 2

1

n
f ''' ff '' f '

n
 


(9)

2'' Pr f ' Ec( f '')       (10)

While applying the standard procedure of ADM
Eqs (9) and (10) becomes
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Applying the inverse operator on both sides of (11) and (12)
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Simplifying Eqs (13) and (14) we get
2
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Where 1 f ''(0)  and 2 (0)   are to be determined from the boundary conditions at infinity in (8). The nonlinear

terms 2ff '', f ' and f ' can be decomposed as Adomian polynomials
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Where 0 1n nB ( f , f ,..., f ) 0 1n nC ( f , f ,..., f )and 0 1 0 1n n nD ( f , f ,..., f , , ,..., )   0 1n nE ( f , f ,..., f ) are the so called

Adomian polynomials. In the Adomian decomposition method [1] f and θ can be expanded as the infinite series
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Substituting (17), (18), (19) and (20) into (15) and (16) gives
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Hence, the individual terms of the Adomian series solution of the equation (6)–(8) are provided below by the simple
recursive algorithm
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For numerical calculation, we choose the m-term approximation of f ( ) and ( )  as
1

0

m

m n
n

( ) f ( )




    and

1

0

m

m n
n

( ) ( )




    
The recursive algorithms (24)–(27) were programmed in the MATLAB. The research delivered upto 15th term of
approximations to both f ( ) and ( )  . Given below are only the first few terms due to lack of space.
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etc.,
4. Homotopy Perturbation Method
4.1 Basic Concepts of HPM
consider the following nonlinear differential equation

( ) ( ) 0,A u f r r   (28)

Considering the boundary conditions of:

, 0,
u

B u r
n

     
(29)

where A is a general differential operator, B is a boundary operator, f(r) is a known analytical function, and Γ is the boundary
of the domain Ω.
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The operator A can be divided into two parts of L and N, where L is the linear part, while N is a nonlinear one Equation (28)
therefore can be rewritten as follows:

( ) ( ) ( ) 0,L u N u f r   (30)

By the Homotopy technique, we construct a Homotopy as ( , ) : [0,1]v r p   which satisfies:

0( , ) (1 )[ ( ) ( )] [ ( ) ( )] 0, [0,1] ,H v p p L v L u p A v f r p r        (31)

Where [0,1]p is an embedding parameter and u0 is an initial approximation of Eqs (30)

This satisfies the boundary conditions.
Consider Eqs (31),

0( ,0) ( ) ( ) 0

( ,1) ( ) ( ) 0.

H v L v L u

H v A v f r

  
   

(32)

The changing process of p from zero to unity is just that of v(r, p) from u0(r) to u(r).

In topology, this is called deformation, 0( ) ( )L v L u and ( ) ( )A v f r are called Homotopy. According to HPM, we can

first use the embedding parameter p as “small parameter”, and assume that the solution of Eqs (31) can be written as a power
series in p:

2
0 1 2 ...,v v pv p v    (33)

Setting p=1 results in the approximate solution of Eqs (31)

0 1 21
lim ...,
p

u v v v v


     (34)

The combination of the perturbation method and the Homotopy method is called the HPM, which lacks the limitations of the
traditional perturbation methods although this technique has full advantages of the traditional perturbation techniques. The
series Eqs (34) is convergent for most cases. However, the convergence rate depends on the nonlinear operator A(v).

4.2 Homotopy Perturbation Solutions
According to HPM, we can construct a Homotopy of Equations (6) and (7) as
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2 3
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2 3

0 1 2 3( ) ( ) ( ) ( ) ( ) ......,p p p              (38)

substituting F and θ from Equations (37) and (38) into Equations (35) and (36) and some simplification and rearranging
based on powers of p-terms
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Solving Eqs (39),(41),(43) with the boundary conditions, Eqs (40),(42),(44) using MATLAB the research delivered upto 15th

term of approximations to both f ( ) and ( )  . Given below are only the first few terms due to lack of space.
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etc.,
and
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2
2 3 41 2 1 2

1

1

2 6 2 4

E c
P r

    

                                   
etc.,
which is exactly the same as Adomian decomposition solution.

The undetermined values of 1 and 2 are calculated from the boundary conditions at infinity in (8). The difficulty at

infinity is overcome by employing the diagonal Padé approximants [10] that approximate f '( ) and ( )  using 15
' ( ) 

and 15( )  respectively. The numerical results of 1 and 2 from 15 0'lim ( )   and 15 0lim ( )   for

selected m in the range from 4 to 8 are shown in the Tables below.

5. Results and Discussion
Table 1

The velocity gradient ( 1 ''(0)f  ) for various values of n using HPM-Padé and ADM-Padé techniques

A

Present Result
R Cortell [7]

ADM-Padé HPM-Padé

''(0)f ''(0)f ''(0)f
[7/7] [8/8] [7/7] [8/8]

0 0.62821 0.62802 0.62725 0.62754 0.62754
0.2 0.76775 0.76597 0.76675 0.76664 0.76675
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0.5 0.88999 0.88974 0.88889 0.88947 0.88947
0.75 0.95861 0.95378 0.95382 0.95012 0.95378

1 1.05 1 1.066 1.023 1
1.5 1.06789 1.06158 1.06201 1.06158 1.06158
3 1.14986 1.14991 1.14858 1.14789 1.14858
7 1.21874 1.21684 1.21651 1.21598 1.21684
10 1.23357 1.23487 1.23488 1.23584 1.23487
20 1.25836 1.25741 1.25689 1.25741 1.25741

100 1.27675 1.27676 1.27675 1.27566 1.27676

Table 2,The velocity gradient ( 2 '(0)  ) for various values of n with Ec=0, Pr=1 using HPM-Padé and ADM-Padé

techniques

n

'(0) '(0) '(0)
ADM-Padé

of
ADM-Padé

of
ADM-Padé

of
HPM-Padé

of
HPM-Padé

of
HPM-Padé

of
[6/6] [7/7] [8/8] [6/6] [7/7] [8/8]

0.5 0.52665 0.56199 0.56269 0.52674 0.56187 0.56236

1 0.57104 0.54021 0.54693 0.57123 0.54023 0.54723

3 0.52568 0.52549 0.52793 0.52569 0.52446 0.52793

10 0.47792 0.47576 0.47895 0.47785 0.47653 0.47881

Table 3,The velocity gradient ( 2 '(0)  ) for various values of Ec at n=1 and Pr=1 using HPM-Padé and ADM-Padé

techniques

Ec

'(0) '(0) '(0)
ADM-Padé

of
ADM-Padé

of
ADM-Padé

of
HPM-Padé

of
HPM-Padé

of
HPM-Padé

of
[6/6] [7/7] [8/8] [6/6] [7/7] [8/8]

0 0.57104 0.54021 0.54693 0.57104 0.54021 0.54693

0.2 0.19981 0.19979 0.19927 0.19982 0.19979 0.19929

0.5 0.49988 0.49957 0.4998 0.49987 0.49956 0.4998

1 1 0.99998 0.99995 1 0.99998 0.99995

Table 4,The velocity gradient ( 2 '(0)  ) for various values of Pr at n=3 and Ec=1 using HPM-Padé and ADM-Padé

techniques

Ec

'(0) '(0)
ADM-Padé

of
ADM-Padé

of
ADM-Padé

of
HPM-Padé

of
HPM-Padé

of
HPM-Padé

of
[6/6] [7/7] [8/8] [6/6] [7/7] [8/8]

0.5 0.26181 0.28264 0.28894 0.26181 0.28264 0.28894

0.72 0.42176 0.46637 0.46964 0.42176 0.46687 0.46964

1 0.76478 0.75348 0.75557 0.76478 0.75348 0.75567

2 1.5194 1.4984 1.4991 1.5194 1.4984 1.4995
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Fig. 1 Velocity profiles '( )f  for various values of n when Pr= 1 and Ec=1 Using 15[7/7]' .

Fig. 2 Temperature profiles ( )  for various values of Pr at n = 3 and Ec= 1 Using 15[7/7] .

Fig. 3 Temperature profiles ( )  for various values of Ec at n = 1 and Pr= 1 Using 15[7/7] .

Fig. 4 Temperature profiles ( )  for various values of n at Ec = 0 and Pr= 1 Using 15[8/8] .
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From Fig.1 we note that when unsteadiness parameter n increases, the velocity profile decreases. In Figs. 2 and 3 we note that
when Prandtl Number (Pr) increases that implies the temperature decreases within the boundary layer for all values of the
Prandtl number. This is consistent with the well-known fact that the thermal boundary layer thickness decreases with
increasing Prandtl number. In Fig 4 we note that when unsteadiness parameter n increases the temperature profiles decreases.

5. Conclusion
The Homotopy perturbation method and Adomian decomposition method is applied to solve a system of two nonlinear
ordinary differential equations with a specified boundary condition that describes viscous flow and heat transfer over a
nonlinearly stretching sheet. The obtained solutions have matched with the existing numerical result. The Homotopy
perturbation method and Adomian decomposition method techniques are very efficient alternative tools to solve nonlinear
models with infinite boundary conditions.
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