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Introduction
In this paper, we investigate the Birth Death Chain, which is an important sub-class of Markov Chain. In the Birth Death
Chain, the possible changes consists of an increase or decrease by one, or no change. Thus, the state space of the Birth Death
Chain is the set of non- negative integers. The Birth Death Chains are frequently used to model growth of biological
populations. The variety of dynamic behavior exhibited by many species of plants, insects and animals has stimulated great
interest in the development of mathematical models. In many ecological problems, such as animals populations, epidemics and
competition between species, their patterns of growth are influenced by population size.

The Birth Death Chain is not only useful for studying processes of biological populations, it is also used model the states of
chemical systems. For example, the radioactive transformations can be modeled as a Birth process. In the radioactive
transformation, the radioactive atoms are unstable and disintegrate stochastically. The new atoms are also unstable and could
emit radioactive particles. Then these new atoms will decay with specified rates from one state to the adjacent state. This
process can be modeled by the Birth Death Chain.

The queuing model is another important application of the Birth Death Chain in a wide range of areas, such as computer
networks and telecommunications. For example, the queuing can be used to optimize the size of the storage space, to
determine the trade-off between throughput and inventory, and to exhibit the propagation of blockage.

We consider the Poisson process and saw that it can be used to describe the arrivals of service requests in many cases of great
practical interest. In a practical queuing system, the request arrivals result in resource allocation and eventually the users get
served and leave the queue. It is customary to view this process as a member of a wider class of stochastic processes that are
commonly referred to as the Birth and Death. Within this framework, every incoming request is regarded as a Birth and every
user that, after being served, leaves the system is regarded as a Death. For the Poisson process the average Birth rate is
specified by the distribution parameter λ. The Birth rate can change as a function of the state of the queuing system. However,
we can still say that in a short time interval h, the probability of a single Birth is equal to  λnh+o(h), where subscript n indicates
one of the system states. Likewise, it is reasonable to assume that in a short time interval h, the number of users leaving the
system is equal to μnh+o(h), where μn indicates the average Death rate, and index n referred to the state of queuing system.
The Birth and Death process is frequently used as a mathematical model of a queuing system. The framework of the Birth and
Death process will allow us to derive some results that describe the behavior of the queuing system in general.

Preliminaries
Poisson Process
A stochastic process {N(t), t ≥ 0} is said to be a Poisson process with intensity or rate λ > 0 if the following conditions a re

satisfied
1. It starts from 0, (i.e) N(0) = 0.
2. It has stationary and independent increments. Stationary means that for time points s and t, s>t, the probability

distribution of any increment Xs-Xt depends only on the length of the intervals on equally long time intervals are
identically distributed. Independent means that for non-overlapping intervals [t,s] and [u,v] the random variables Xs -
Xt and Xv – Xu are independent.

3. For every t > 0, N(t) has a Poisson distribution with parameter λt

Birth Death Process
Consider a stochastic process N(t) that is continuous in time but has a discrete state space Ω={0,1,2,….}. Suppose that this
process describes a physical system that is in state En, n=0,1,2,… at time t, if and only if N(t)=n. then the system is described
by the BIRTH AND DEATH PROCESS if there exists non-negative birth rate λn, n =0,1,2,…, and non negative death rates μn,
n=0,1,2,…, such that the following postulates (sometimes called nearest neighbor assumptions) are true:

1. State changes are only allowed between state En to state En+1 or from state En to En-1 if n≥1, but from state En to state
E1 only.

2. If at time t the system is in state En, the probability that between time t and time t+h a transition from state En to state
En+1 occurs equals λnh+o(h), and the probability of transition from En to En-1 is μnh+o(h),(n≥1).
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Stochastic Process
Let T be a set, and tϵT a parameter, in this case signifying time. Let X(t) be a random variable ∀tϵT. then the set of random
variables {X(t),  tϵT} is called a stochastic process

Arrival Pattern
In queuing the arrival process is usually stochastic. As a result it is necessary to determine the probability distribution of the
inter-arrival times (times between successive customer arrivals) as well. Also customers can arrive in individually or
simultaneously (batch or bulk arrivals)

Service Pattern
As in arrivals, a probability distribution is needed for describing a sequence of customer service time. Service may also be
single or batch. The service process may depend on the number of customers waiting in queue for service. In this it is called
state depended service

Queue Discipline
Queue discipline refers to the manner in which customers are selected  for service when a queue has formed. The default is
FCFS (i,e) first come, first served. Some others are LCFS (i,e) last come, first served. RSS(Random Service Selection) (i,e)
selection for service in random order independent of the time of arrivals and there are other priority systems where customers
are given priorities upon entering the system , ones with higher priority are selected.

Random Variable
A single-valued real function X(e) defined on the set E of elementary events is called Random Variables if inverse image of
every interval I and the real axis of the form (-∞,x) is random event.

Basic Queuing Theory
Definition 1.1
Consider a stochastic process N(t) that is continuous in time but has a discrete state space Ω={0,1,2,….}. Suppose that this
process describes a physical system that is in state En, n=0,1,2,… at time t, if and only if N(t)=n. then the system is described
by the BIRTH AND DEATH PROCESS if there exists non-negative birth rate λn, n =0,1,2,…, and non negative death rates μn,
n=0,1,2,…, such that the following postulates (sometimes called nearest neighbor assumptions) are true:

1. State changes are only allowed between state En to state En+1 or from state En to En-1 if n≥1, but from state En to state
E1 only.

2. If at time t the system is in state En, the probability that between time t and time t+h a transition from state En to state
En+1 occurs equals λnh+o(h), and the probability of transition from En to En-1 is μnh+o(h),(n≥1).

Characteristics 1.2
A queueing system is usually described by five basic characteristics of queueing processes:

1. Arrival pattern of customers.
2. Service pattern of customers.
3. Queue discipline .
4. System capacity .
5. Number of service channels.
6.

In most queueing systems, the arrival pattern will be stochastic. We therefore wish to know the probability distribution
describing the inter arrival times (times between successive customer arrivals), and also whether customers arrive singly or in
groups. If an arrival pattern does not depends on time (in other words, the probability distribution that describes the arrival
process is time-independent), it is called a stationary arrival pattern. An arrival pattern that is time-dependent is called non-
stationary.

Queue Discipline 1.3
Queue discipline indicates the manner in which customers   receive service. The most common discipline are

1. FCFS (FIRST COME FIRST SERVED)
2. LCFS (LAST COME FIRST SERVED)

Or disciplines involving a set of priorities.
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Notations to Prove the Properties of Birth Death Chain 1.4
First we define the transition probabilities of birth death chain as follows:

pi if j=i+1
pij = qi if j=i-1

1- pi – qi if j=I
0     else

where  pi, qi ≥ 0 and pi + qi ≤ 0. pi is called the birth rate, and qi is called the death rate. To ensure the zero boundary condition,
we usually require   q0 = 0 and p0 > 0. Then the state space is S = {0,1,2,…}.

To illustrate the basic setup, we use a simple queuing model. Let Xn represent the number of people in a line for some service
at time n. We assume that people arrive at a rate of λ. Then we have p i = λ for each i∈S.

If there is a single server that serves people at a rate of µ, then we have qi =µ for each i∈S expect  q0 =0. If there are k>1
servers and each servers people at a rate µ, then we have the following configuration:

qi=       iµ,   if i≤k
kµ,  if i≥k

Theorem 1.5
The Birth Death Chain is transient under [1,2] if and only if

<∞
Proof
Let αn denote the probability that the chain, starting at state n ϵ {0,1,2,….}, ever returns to state 0. Then we have

αn = P{Xi =0 for some i≥1| X0 = n}
= ∑k P{ Xi =0 for some i≥1| X1 = k} P{Xi = k|X0 = n}
= pnαn+1+qnαn-1+(1-pn-qn) αn

Which yields the relation as follows?
(pn + qn) αn= pn αn+1 + qn αn-1

Then we have inductive relation as follows:

Iterating the above equation yields

Finally, we have

If the following term convergence

< ∞
Then we let
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So that

as n → ∞

Let us continue consider the Queueing model with single server. Then we have

Which converges if µ<λ. This implies that if the arrival rate is strictly greater than the leaving rate, then the serve r queue is
transient.

The Expected Extinction Time 1.6
Consider the Birth Death Model with 0 as a recurrent absorbing state (p0=0). Then the population will die out at some point.
Let Tk denote the expected time before the population hits zero, conditioned on an initial population of size k. then we have

Tk = pk(1+Tk+1)+qk(1+Tk-1)(1-pk-qk)(1+Tk)
After rearranging the equation, we have

Since T0=0, we have,

Iterating the above equations yields

It remains to determine the exact value of T1. To determine T1, we modify the model slightly. Let p0=1 and T0 denote the first
return time. Then E(T0)=T1+1, where T1 is what we want. Let π be stationary distribution of the modified model, then we have

thus we have

Finally, we can get

Continuous and Discrete Type Birth Death Process
Definition 2.1

Let T be a set, and tϵT a parameter, in this case signifying time. Let X(t) be a random variable ∀tϵT. then the set of random
variables {X(t),  tϵT} is called a stochastic process

Definition 2.2
Let X(t) to be the state of the stochastic process at time t. If  T is countable, for example, if we let t=0,1,2,…, then we say that
{X(t),tϵT} is said to be a discrete time process. If, on the other hand, we let T be an interval of [0,∞), then the stochastic



IJMDRR
E- ISSN –2395-1885

ISSN -2395-1877

Research Paper
Impact Factor: 4.164

Refereed Journal

International Journal of Multidisciplinary Research Review, Vol.1, Issue -33, November-2017. Page - 174

process is said to be a continuous-time process. The set of values of X(t) is called the state space, which can also be either
discrete (finite or countably infinite), or continuous(a subset of R or Rn).

Definition 2.3
A stochastic process {X(n), nϵN} is called a Markov chain if, for all times nϵN and for all states (i0,i1,…..in)
(2.1) P={Xn = in | X0 = i0,….,Xn-1 = in-1 ) =P{Xn= in| Xn-1 = in-1}
equation(2.1) is called the Markov property, and in fact, any stochastic process satisfying the Markov property will be a
Markov chain, whether it is discrete- time (as we defined above), or continuous-time process
We call conditional probability

P{Xn=j|Xn-1=i},i,jϵS
The transition probability from state i to state j , denoted by pi j(n)

Definition 2.4
A  Markov Chain is called time-homogeneous if pi j (n) does not depend on n. In other words,

P{Xn=  j  | Xn-1= i} = P{Xn+m =  j  |  Xn+m-1=  I }
For  m  N and  m ≥ - (n—1).In the future,  unless otherwise noted,  all Markov chains will be assumed to be time
homogeneous and we will devote the time probability  from state  i to state  j by  Pi j.

Given  the transition probabilities, we can construct  the transition matrix  P   for  the Markov Chain. P is an   N  × N  matrix
where the (i,j)  entry Pi j is pi j.In order for a matrix to be the  transition matrix for a Markov chain, it must be a stochastic
matrix. In other words, it must satisfy the following two properties:

(2.2) ≤ Pi j ≤ 1,    1≤ i, j ≤   N

(2.3)
1

N

j
 Pi j = 1,     1≤ i ≤  N.

Given a transition matrix P, an initial probability distribution ∅ where ∅(i) =P{Xo=  i} , i =  1, ……,N, we can find  the
probabilities that the Markov chain  will be in a certain state i at a given  time n.  we define the n-step  probabilities Pi,j

n as the
following:

Pij
n=P{Xn=j|X0=i}=P{Xn+k=j|Xk=i}

The latter part of the equation follows from time-homogeneity. Then we have

(2.4) P{Xn=j}= 0( ) ( , ) ( ) { | }n n
i S i S

i p i j i P X j X i 
 

   
Where S is the state space.

Theorem   2.5
The  n-step  transition probability pn( i , j )  is actually the          ( i , j) entry in the  matrix Pn

Proof
We will prove this by induction. Let n=1. Then, by the definition of the transition matrix P, pij is the (i,j) entry and our theorem
holds.

Now, assume that it is true for a given n. Then
Pij

n+1=P{Xn+1=j|X0=i}
=∑k P{Xn=k|X0=i}P{Xn+1=j|Xn=k}
=∑k pik

npkj

But since pik
n is the (i,k) entry of Pn by assumption, the final sum is just the (i,j) entry of PnP=Pn+1

The intial probability distribution can be written as a vector:
Φ0=( Φ0(1),…… Φ0(N)).

Then we can find the distribution at time n, Φn(i)=P{Xn=i}; and    Φn= Φ0P
n.

Definition 2.6
Two states i and j of a Markov chain communicate iff there exists m,n ≥ 0 such that pm(i,j) >0 and pn(i,j) > 0
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Definition 2.7.
A Martkov chain is irreducible if ∀i,j∃n = n (i,j) with pn(i,j)>0
Simply put, a Markov chain is irreducible if it has only one communication class.

Poisson Process
Consider a stochastic process that counts arrivals, {N(t), t ≥ 0} where N(t) denotes the total number of arrivals up to time t,
and N(0) =0. The stochastic process N(t) is considered a Poisson process N(t) is considered a Poisson process with rate
parameter λ if it satisfies the following three conditions :

1. The probability that an arrival occurs between time t and t+∆t is λ∆t+ o(∆t), where λ is a constant
independent of N(t). we introduce the notation o(∆t) to denote a function of ∆t satisfying

0

( )
lim 0

t

o t

t 





2. The probability that mpore than one arrival occurs between t and t+∆t is o(∆t).
3. The numbers of arrivals in non-overlapping intervals are statistically independent, so that the process has

independent increments.
Let pn(t) be the probability of n arrivals in a time intervals of length t, where nϵN∪0. Now,

pn(t+∆t) =P {n arrivals in t and none in ∆t}
P{n-1 arrivals in t and one in ∆t}
+……+P{no arrivals in t and n in ∆t}

Using assumptions (i),(ii),(iii), we have
(2.5) pn(t+∆t)= pn(t)[1- λ∆t- o(∆t)] + pn-1(t)[λ∆t+o(∆t)]+o(∆t),

Where the last o(∆t) represents the terms P{n-j arrivals in t and j in ∆t} where 2 ≤ j ≤ n For n=0, we have
(2.6) po(t+∆t)= po(t)[1-λ∆t-o(∆t)].

From equation (2. 5) and (2.6) and combining all the o(∆t) terms, we have
(2.7) po(t+∆t)-po(t) = -λ∆tpo(t)+ o(∆t)

And
(2.8) pn(t+∆t)-pn(t) = -λ∆tpn(t)+λ∆tpn-1(t)+o(∆t).

From equation (2.7) and (2.8) we can take the limit as ∆t→0 and get the differential – difference equations

(2.9) 0 0
00

( ) ( ) ( )
lim[ ( ) ]

t

p t t p t o t
p t

t t


 

   
  

 

(2.10) 10

( ) ( ) ( )
lim[ ( ) ( ) ]n n

n n
t

p t t p t o t
p t p t

t t
   

   
  

 
,

With simplify to

(2.11) 0
0

( )
( )

dp t
p t

dt
  and

(2.12) 1

( )
( ) p ( )n

n n

dp t
p t t

dt
     (n ≥ 1)

Now we have an infinite set of linear , first order ordinary differential equations to solve. Equation (2.11) has the general
solution po= Ce-M, where C=1 since po=0.

Now , let n=1 in (2.12) so that

1
1 0

( )
( ) p ( )

dp t
p t t

dt
   

Or 1
1 0

( )
( ) p ( ) e tdp t

p t t
dt

      .

Solving this equation we get
p1(t) = Ce-λt + λte-λt

Since pn(0) is 0 ∀ n> 0 we have C =0, and
p1(t) = λte-λt

Continuing this process for n = 2 and n = 3 we get



IJMDRR
E- ISSN –2395-1885

ISSN -2395-1877

Research Paper
Impact Factor: 4.164

Refereed Journal

International Journal of Multidisciplinary Research Review, Vol.1, Issue -33, November-2017. Page - 176

p2(t) =
2( )

2
tt

e   and

p3(t) =
3( )

3!
tt

e   .

Continuous – Time Markov Chains 2.11
Let { X (t) , t ∈ T} be a continuous – time Markov chain. This means

T ={t: 0 ≤ t < ∞ }
Consider any times s > t > u ≥ 0 and states i , j ; then
(2.13) pij(u,s) = ( , ) ( , )ir rj

r

p u t p t s
Where pij(u,s) is the probability of moving from state i to state j in the time beginning at u and ending at s, and the summation
is over the entire state space of the chain.

Letting u= 0 and s= t+∆t gives
(2.14) pij(0, t+∆t) = (0, ) ( , t t)ir rj

r

p t p t  
Let pi(0) be the probability that the chain starts in state i at time 0 and pj(t) be the probability that the chain is in state j at time t
regardless of starting state ,
We multiply (2.14) by pi(0) and sum over all states to get

(0) (0, t t) (0, ) (0) ( , ),i ij ir i rj
i r i

p p p t p p t t t      Or               (2.15)

( ) ( ) ( , ).j r rj
r

p t t p t p t t t    
For the Poisson process

λ∆t + o(∆t) if  r = j-1, j ≥ 1,
Prj (t, t+∆t) =1-λ∆t +o(∆t) if r =j,

o(∆t) lsewhere.

Substituting this into (2.15) , we get

1( ) [ ( )] ( ) [1 ( )] ( ) ( )j j jp t t t o t p t t o t p t o t              ( j ≥ 1 )

Which is (2.5).
Now if the transistion probability functions p(u,s) have continuous functions qi(t) and qij(t) associated with them so that

(2.16) P{a change of state in (t, t+∆t)} = 1- pii (t, t+∆t) = qi (t)∆t +o(∆t)
And

(2.17) pij (t, t+∆t) = qij(t) ∆t +o(∆t),
By taking equation (2.13) and using (2.16) and (2.17) we get the Kolmogorov forward and backwards equations

(2.18) ( , ) ( ) ( , ) ( , ) ( )ij j ij ir rj
r j

p u t q t p u t p u t q t
t 


  

 

(2.19) ( , ) (u) ( , ) ( ) p (u, t)ij i ij ir rj
r i

p u t q p u t q u
u 


 

  .
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