SOME PROPERTIES OF INTUITIONTISTIC FUZZY SUBHEMIRINGS OF A HEMIRING

N. Anitha
Assistant Professor in Mathematics, Periyar University PG Extn Centre, Dharmapuri.

INTRODUCTION

There are many concepts of universal algebras generalizing an associative ring ($R ;+;$.). Some of them in particular, nearrings and several kinds of semirings have been proven very useful. Semirings (called also halfrings) are algebras (R; + ; .) share the same properties as a ring except that ($R ;+$) is assumed to be a semigroup rather than a commutative group. Semirings appear in a natural manner in some applications to the theory of automata and formal languages. An algebra (R ; + , .) is said to be a semiring if ($\mathrm{R} ;+$) and ($\mathrm{R} ;.$) are semigroups satisfying $\mathrm{a} .(\mathrm{b}+\mathrm{c})=\mathrm{a} . \mathrm{b}+\mathrm{a} . \mathrm{c}$ and $(\mathrm{b}+\mathrm{c}) . \mathrm{a}=\mathrm{b} \cdot \mathrm{a}+\mathrm{c} . \mathrm{a}$ for all a, b and c in R. A semiring R is said to be additively commutative if $a+b=b+a$ for $a l l a, b$ and c in R. A semiring R may have an identity 1 , defined by $1 . a=a=a .1$ and a zero 0 , defined by $0+a=a=a+0$ and $a .0=0=0$. a for all a in R. A semiring R is said to be a hemiring if it is an additively commutative with zero. After the introduction of fuzzy sets by L.A.Zadeh[10], several researchers explored on the generalization of the concept of fuzzy sets. The concept of intuitionistic fuzzy subsets (IFS) was introduced by K.T.Atanassov[4], as a generalization of the notion of fuzzy set. The notion of Fuzzy left h-ideals in hemirings with respect to a s-norm was introduced in [2].In this paper, we introduce the some Theorems in intuitionistic fuzzy subhemiring of a hemiring.

1.PRELIMINARIES

1.1Definition: Let X be a non-empty set. A fuzzy subset A of X is a function $A: X \rightarrow[0,1]$.
1.2 Definition: An intuitionistic fuzzy subset (IFS) A in X is defined as an object of the form $A=\left\{<x, \mu_{A}(x), v_{A}(x)>/\right.$ $x \in X \quad\}$, where $\mu_{A}: X \rightarrow[0,1]$ and $v_{A}: X \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and for every $x \in X$ satisfying $0 \leq \mu_{A}(x)+v_{A}(x) \leq 1$.
1.3 Definition: Let R be a hemiring. An intuitionistic fuzzy subset A of R is said to be an intuitionistic fuzzy subhemiring (IFSHR) of R if it satisfies the following conditions:
(i) $\quad \mu_{\mathrm{A}}(\mathrm{x}+\mathrm{y}) \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$,
(ii) $\mu_{\mathrm{A}}(\mathrm{xy}) \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$,
(iii) $v_{\mathrm{A}}(\mathrm{x}+\mathrm{y}) \leq \max \left\{v_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{y})\right\}$,
(iv) $\quad v_{A}(x y) \leq \max \left\{v_{A}(x), v_{A}(y)\right\}$, for all x and y in R.
1.4 Definition: Let A and B be intuitionistic fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by AxB , is defined as $\mathrm{AxB}=\left\{\left\langle(x, y), \mu_{\mathrm{AxB}}(\mathrm{x}, \mathrm{y}), v_{\mathrm{AxB}}(\mathrm{x}, \mathrm{y})\right\rangle /\right.$ for all x in G and y in H$\}$, where $\mu_{\mathrm{AxB}}(\mathrm{x}, \mathrm{y})=\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right\}$ and $v_{A x B}(x, y)=\max \left\{v_{A}(x), v_{B}(y)\right\}$.
1.5 Definition: Let A be an intuitionistic fuzzy subset in a set S, the strongest intuitionistic fuzzy relation on S, that is an intuitionistic fuzzy relation on A is V given by $\mu_{V}(x, y)=\min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$ and $v_{V}(x, y)=\max \left\{v_{A}(x), v_{A}(y)\right\}$, for all x and y in S .

2. SOME PROPERTIES OF INTUITIONISTIC FUZZY SUBHEMIRING OF A HEMIRING R.

2.1 Theorem: Let ($R,+,$.$) be a hemiring. Intersection of any two intuitionistic fuzzy subhemiring of a hemiring R$ is an intuitionistic fuzzy subhemiring of R.
Proof: Let A and B be any two intuitionistic fuzzy subhemiring of a hemiring R and let x and y in R. Let $A=\left\{\left(x, \mu_{A}(x)\right.\right.$, $\left.\left.v_{A}(x)\right) / x \in R\right\}$ and $B=\left\{\left(x, \mu_{B}(x), v_{B}(x)\right) / x \in R\right\}$ and also let $C=A \cap B=\left\{\left(x, \mu_{C}(x), v_{C}(x)\right) / x \in R\right\}$, where min $\left\{\mu_{A}(x)\right.$, $\left.\mu_{\mathrm{B}}(\mathrm{x})\right\}=\mu_{\mathrm{C}}(\mathrm{x})$ and $\max \left\{v_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{B}}(\mathrm{x})\right\}=\mathrm{v}_{\mathrm{C}}(\mathrm{x})$. Now, $\mu_{\mathrm{C}}(\mathrm{x}+\mathrm{y})=\min \left\{\mu_{\mathrm{A}}(\mathrm{x}+\mathrm{y}), \mu_{\mathrm{B}}(\mathrm{x}+\mathrm{y})\right\} \geq \min \left\{\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}\right.$, $\left.\min \left\{\mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right\}\right\}=\min \left\{\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{x})\right\}, \min \left\{\mu_{\mathrm{A}}(\mathrm{y}), \mu_{\mathrm{B}}(\mathrm{y})\right\}\right\}=\min \left\{\mu_{\mathrm{C}}(\mathrm{x}), \mu_{\mathrm{C}}(\mathrm{y})\right\}$.Therefore, $\mu_{\mathrm{C}}(\mathrm{x}+\mathrm{y}) \geq \min \left\{\mu_{\mathrm{C}}(\mathrm{x})\right.$, $\left.\mu_{C}(\mathrm{y})\right\}$, for all x and y in R. And, $\mu_{C}(\mathrm{xy})=\min \left\{\mu_{\mathrm{A}}(\mathrm{x} y), \mu_{\mathrm{B}}(\mathrm{x} y)\right\} \geq \min \left\{\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}, \min \left\{\mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right\}\right\}=$ $\min \left\{\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{x})\right\}, \min \left\{\mu_{\mathrm{A}}(\mathrm{y}), \mu_{\mathrm{B}}(\mathrm{y})\right\}\right\}=\min \left\{\mu_{\mathrm{C}}(\mathrm{x}), \mu_{\mathrm{C}}(\mathrm{y})\right\}$. Therefore, $\mu_{\mathrm{C}}(\mathrm{xy}) \geq \min \left\{\mu_{\mathrm{C}}(\mathrm{x}), \mu_{\mathrm{C}}(\mathrm{y})\right\}$, for all x and y in R. Also, $v_{C}(x+y)=\max \left\{v_{A}(x+y), v_{B}(x+y)\right\} \leq \max \left\{\max \left\{v_{A}(x), v_{A}(y)\right\}, \max \left\{v_{B}(x), v_{B}(y)\right\}\right\}=\max \left\{\max \left\{v_{A}(x), v_{B}(x)\right\}, \max \right.$ $\left.\left\{v_{A}(y), v_{B}(y)\right\}\right\}=\max \left\{v_{C}(x), v_{C}(y)\right\}$.Therefore, $v_{C}(x+y) \leq \max \left\{v_{C}(x), v_{C}(y)\right\}$, for all x and y in R. And, $v_{C}(x y)=$ $\max \left\{v_{A}(x y), v_{B}(x y)\right\} \leq \max \left\{\max \left\{v_{A}(x), v_{A}(y)\right\}, \max \left\{v_{B}(x), v_{B}(y)\right\}\right\}=\max \left\{\max \left\{v_{A}(x), v_{B}(x)\right\}, \max \left\{v_{A}(y), v_{B}(y)\right\}\right\}=$ $\max \left\{v_{C}(x), v_{C}(y)\right\}$.Therefore, $v_{C}(x y) \leq \max \left\{v_{C}(x), v_{C}(y)\right\}$, for all x and y in R. Therefore, C is an intuitionistic fuzzy
subhemiring of a hemiring R. Hence, intersection of any two intuitionistic fuzzy subhemiring of a hemiring R is an intuitionistic fuzzy subhemiring of R.
2.2 Theorem: Let ($\mathrm{R},+$. .) be a hemiring. The intersection of a family of intuitionistic fuzzy subhemirings of R is an intuitionistic fuzzy subhemiring of R.
Proof: Let $\left\{\mathrm{V}_{\mathrm{i}}: \mathrm{i} \in \mathrm{I}\right\}$ be a family of intuitionistic fuzzy subhemirings of a hemiring R and let $\mathrm{A}=\underset{i \in I}{\cap} V_{i}$. Let x and y in R .
Then, $\mu_{\mathrm{A}}(\mathrm{x}+\mathrm{y})=\inf _{i \in I} \mu_{\mathrm{Vi}}(\mathrm{x}+\mathrm{y}) \geq \inf _{i \in I} \min \left\{\mu_{\mathrm{vi}}(\mathrm{x}), \mu_{\mathrm{Vi}}(\mathrm{y})\right\}=\min \left\{\inf _{i \in I} \mu_{\mathrm{Vi}}(\mathrm{x}), \inf _{i \in I} \mu_{\mathrm{Vi}}(\mathrm{y})\right\}=\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$. Therefore, $\mu_{\mathrm{A}}(\mathrm{x}+\mathrm{y}) \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$, for all x and y in R. And, $\mu_{\mathrm{A}}(\mathrm{xy})=\inf _{i \in I} \mu_{\mathrm{Vi}}(\mathrm{xy}) \geq \inf _{i \in I} \min \left\{\mu_{\mathrm{Vi}}(\mathrm{x}), \mu_{\mathrm{Vi}}(\mathrm{y})\right\}=\min \{$ $\left.\inf _{i \in I} \mu_{\mathrm{vi}}(\mathrm{x}), \inf _{i \in I} \mu_{\mathrm{Vi}}(\mathrm{y})\right\}=\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$. Therefore, $\mu_{\mathrm{A}}(\mathrm{xy}) \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$, for all x and y in R. Also, $v_{\mathrm{A}}(\mathrm{x}+\mathrm{y})$ $=\sup _{i \in I} v_{\mathrm{vi}}(\mathrm{x}+\mathrm{y}) \leq \sup _{i \in I} \max \left\{v_{\mathrm{Vi}}(\mathrm{x}), v_{\mathrm{Vi}}(\mathrm{y})\right\}=\max \left\{\sup _{i \in I} v_{\mathrm{vi}}(\mathrm{x}), \sup _{i \in I} v_{\mathrm{vi}}(\mathrm{y})\right\}=\max \left\{v_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{y})\right\}$. Therefore, $v_{\mathrm{A}}(\mathrm{x}+\mathrm{y}) \leq$ $\max \left\{v_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{y})\right\}$, for all x and y in R. And, $\mathrm{v}_{\mathrm{A}}(\mathrm{xy})=\sup v_{\mathrm{Vi}_{\mathrm{i}}}(\mathrm{xy}) \leq \sup \max \left\{\mathrm{v}_{\mathrm{vi}}(\mathrm{x}), \mathrm{v}_{\mathrm{Vi}}(\mathrm{y})\right\}=\max \left\{\sup v_{\mathrm{Vi}}(\mathrm{x}), \sup \mathrm{v}_{\mathrm{Vi}}(\mathrm{y})\right\}$ $=\max \left\{v_{A}(x), v_{A}(y)\right\}$. Therefore, $v_{A}(x y) \leq \max \left\{v_{A}(x), v_{A}(y)\right\}$, for all x and y in R. That is, A is an intuitionistic fuzzy subhemiring of a hemiring R. Hence, the intersection of a family of intuitionistic fuzzy subhemirings of R is an intuitionistic fuzzy subhemiring of R.
2.3 Theorem: If A and B are any two intuitionistic fuzzy subhemiring of the hemirings R_{1} and R_{2} respectively, then $A x B$ is an intuitionistic fuzzy subhemiring of $\mathrm{R}_{1} \times \mathrm{R}_{2}$.

Proof: Let A and B be two intuitionistic fuzzy subhemiring of the hemirings R_{1} and R_{2} respectively. Let x_{1} and x_{2} be in R_{1}, y_{1} and y_{2} be in R_{2}. Then $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are in $R_{1} x R_{2}$. Now, $\mu_{\text {AxB }}\left[\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right]=\mu_{\text {AxB }}\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$ $=\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right), \mu_{\mathrm{B}}\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)\right\} \geq \min \left\{\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{x}_{2}\right)\right\}, \min \left\{\mu_{\mathrm{B}}\left(\mathrm{y}_{1}\right), \mu_{\mathrm{B}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{B}}\left(\mathrm{y}_{1}\right)\right\}\right.$, $\left.\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{2}\right), \mu_{\mathrm{B}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\mu_{\mathrm{AxB}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mu_{\mathrm{AxB}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Therefore, $\mu_{\mathrm{AxB}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right] \geq \min \left\{\mu_{\mathrm{AxB}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mu_{\mathrm{AxB}}\left(\mathrm{x}_{2}\right.\right.$, $\left.\left.y_{2}\right)\right\}$. Also, $\mu_{\mathrm{AxB}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right]=\mu_{\mathrm{AxB}}\left(\mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{y}_{1} \mathrm{y}_{2}\right)=\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1} \mathrm{x}_{2}\right), \mu_{\mathrm{B}}\left(\mathrm{y}_{1} \mathrm{y}_{2}\right)\right\} \geq \min \left\{\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{x}_{2}\right)\right\}\right.$, min $\{$ $\left.\left.\mu_{\mathrm{B}}\left(\mathrm{y}_{1}\right), \mu_{\mathrm{B}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{B}}\left(\mathrm{y}_{1}\right)\right\}, \min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{2}\right), \mu_{\mathrm{B}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\mu_{\mathrm{AxB}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mu_{\mathrm{AxB}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$.Therefore, $\mu_{\mathrm{AxB}}[$ $\left.\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right] \geq \min \left\{\mu_{\mathrm{AxB}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mu_{\mathrm{AxB}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. And, $v_{\mathrm{AxB}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right]=v_{\mathrm{AxB}}\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}\right)=\max \left\{v_{\mathrm{A}}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)\right.$, $\left.v_{B}\left(y_{1}+y_{2}\right)\right\} \leq \max \left\{\max \left\{v_{A}\left(x_{1}\right), v_{A}\left(x_{2}\right)\right\}, \max \left\{v_{B}\left(y_{1}\right), v_{B}\left(y_{2}\right)\right\}\right\}=\max \left\{\max \left\{v_{A}\left(x_{1}\right), v_{B}\left(y_{1}\right)\right\}, \max \left\{v_{A}\left(x_{2}\right), v_{B}\left(y_{2}\right)\right\}\right\}=$ $\max \left\{v_{\mathrm{AxB}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), v_{\mathrm{AxB}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$.

Therefore, $v_{\text {AxB }}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right] \leq \max \left\{v_{\mathrm{AxB}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), v_{\mathrm{AxB}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Also, $v_{\text {AxB }}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right]=v_{\mathrm{AxB}}\left(\mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{y}_{1} \mathrm{y}_{2}\right)=\max$ $\left\{v_{A}\left(x_{1} x_{2}\right), v_{B}\left(y_{1} y_{2}\right)\right\} \leq \max \left\{\max \left\{v_{A}\left(x_{1}\right), v_{A}\left(x_{2}\right)\right\}, \max \left\{v_{B}\left(y_{1}\right), v_{B}\left(y_{2}\right)\right\}\right\}=\max \left\{\max \left\{v_{A}\left(x_{1}\right), v_{B}\left(y_{1}\right)\right\}, \max \left\{v_{A}\left(x_{2}\right), v_{B}\left(y_{2}\right)\right.\right.$ $\}\}=\max \left\{v_{\text {AxB }}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), v_{\mathrm{AxB}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Therefore, $v_{\mathrm{AxB}}\left[\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right] \leq \max \left\{v_{\mathrm{AxB}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), v_{\mathrm{AxB}}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right\}$. Hence AxB is an intuitionistic fuzzy subhemiring of hemiring of $\mathrm{R}_{1} \times \mathrm{R}_{2}$.

2.4 Theorem

Let A and B be intuitionistic fuzzy subhemirings of the hemirings R_{1} and R_{2} respectively. Suppose that e and e are the identity element of R_{1} and R_{2} respectively. If $A x B$ is an intuitionistic fuzzy subhemiring of $R_{1} \times R_{2}$, then at least one of the following two statements must hold.
(i) $\mu_{\mathrm{B}}(\mathrm{e}) \geq \mu_{\mathrm{A}}(\mathrm{x})$ and $v_{\mathrm{B}}(\mathrm{e}) \leq v_{\mathrm{A}}(\mathrm{x})$, for all x in R_{1},
(ii) $\mu_{A}(e) \geq \mu_{B}(\mathrm{y})$ and $v_{A}(e) \leq v_{B}(\mathrm{y})$, for all y in R_{2}.

Proof

Let $A x B$ be an intuitionistic fuzzy subhemiring of $R_{1} \times R_{2}$. By contraposition, suppose that none of the statements (i) and (ii) holds. Then we can find a in R_{1} and b in R_{2} such that $\mu_{A}(a)>\mu_{B}(e), v_{A}(a)<v_{B}(e)$ and $\mu_{B}(b)>\mu_{A}(e), v_{B}(b)<v_{A}(e)$. We have, $\mu_{\mathrm{AxB}}(\mathrm{a}, \mathrm{b})=\min \left\{\mu_{\mathrm{A}}(\mathrm{a}), \mu_{\mathrm{B}}(\mathrm{b})\right\}>\min \left\{\mu_{\mathrm{B}}(\mathrm{e}), \mu_{\mathrm{A}}(\mathrm{e})\right\}=\min \left\{\mu_{\mathrm{A}}(\mathrm{e}), \mu_{\mathrm{B}}(\mathrm{e})\right\}=\mu_{\mathrm{AxB}}(\mathrm{e}, \mathrm{e})$. And, $v_{\mathrm{AxB}}(\mathrm{a}, \mathrm{b})=$ $\max \left\{v_{A}(\mathrm{a}), \quad v_{\mathrm{B}}(\mathrm{b})\right\}<\max \left\{\mathrm{v}_{\mathrm{B}}(\mathrm{e}), \quad \nu_{A}(\mathrm{e})\right\}=\max \left\{\mathrm{v}_{\mathrm{A}}(\mathrm{e}), \mathrm{v}_{\mathrm{B}}(\mathrm{e})\right\}=v_{\mathrm{AxB}}(\mathrm{e}, \mathrm{e})$. Thus AxB is not an intuitionistic fuzzy subhemiring of $R_{1} x R_{2}$. Hence either $\mu_{B}(e) \geq \mu_{A}(x)$ and $v_{B}(e) \leq v_{A}(x)$, for all x in R_{1} or $\mu_{A}(e) \geq \mu_{B}(y)$ and $v_{A}(e) \leq v_{B}(y)$, for all y in R_{2}.
2.5 Theorem Let A and B be two intuitionistic fuzzy subsets of the hemirings R_{1} and R_{2} respectively and $A x B$ is an intuitionistic fuzzy subhemiring of $R_{1} \times R_{2}$. Then the following are true:
(i) if $\mu_{A}(x) \leq \mu_{B}(\mathrm{e})$ and $v_{A}(x) \geq v_{B}($ e $)$, then A is an intuitionistic fuzzy subhemiring of R_{1}.
(ii) if $\mu_{B}(x) \leq \mu_{A}(e)$ and $v_{B}(x) \geq v_{A}(e)$, then B is an intuitionistic fuzzy subhemiring of R_{2}.
(iii) either A is an intuitionistic fuzzy subhemiring of R_{1} or B is an intuitionistic fuzzy subhemiring of R_{2}.

Proof: Let $A x B$ be an intuitionistic fuzzy subhemiring of $R_{1} x R_{2}$ and x and y in R_{1} and e in R_{2}. Then (x, e) and (y, e) are in $R_{1} x R_{2}$. Now, using the property that $\mu_{A}(x) \leq \mu_{B}(e)$ and $v_{A}(x) \geq v_{B}(e)$, for all x in R_{1}. We get, $\mu_{A}(x+y)=\min \left\{\mu_{A}(x+y)\right.$, $\left.\mu_{\mathrm{B}}(\mathrm{e}+\mathrm{e})\right\}=\mu_{\mathrm{AxB}}((\mathrm{x}+\mathrm{y}),(\mathrm{e}+\mathrm{e}))=\mu_{\mathrm{AxB}}[(\mathrm{x}, \mathrm{e})+(\mathrm{y}, \mathrm{e})] \geq \min \left\{\mu_{\mathrm{AxB}}(\mathrm{x}, \mathrm{e}), \mu_{\mathrm{AxB}}(\mathrm{y}, \mathrm{e})\right\} \quad=\min \left\{\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{e})\right\}\right.$, $\left.\min \left\{\mu_{\mathrm{A}}(\mathrm{y}), \mu_{\mathrm{B}}(\mathrm{e})\right\}\right\}=\min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\} \quad \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$. Therefore, $\mu_{\mathrm{A}}(\mathrm{x}+\mathrm{y}) \geq \min \left\{\mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{y})\right\}$, for all x and y in R_{1}. Also, $\mu_{\mathrm{A}}(\mathrm{xy})=\min \left\{\mu_{\mathrm{A}}(\mathrm{xy}), \mu_{\mathrm{B}}(\mathrm{e} \mathrm{e})\right\}=\mu_{\mathrm{AxB}}((\mathrm{xy})$, (e e $\left.)\right)=\mu_{\mathrm{AxB}}[(\mathrm{x}, \mathrm{e})(\mathrm{y}, \mathrm{e})] \geq \min \left\{\mu_{\mathrm{AxB}}(\mathrm{x}, \mathrm{e}), \mu_{\mathrm{AxB}}(\mathrm{y}, \mathrm{e})\right\}=$ $\min \left\{\min \left\{\mu_{A}(x), \mu_{B}(e)\right\}, \min \left\{\mu_{A}(y), \mu_{B}(e)\right\}\right\}=\min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$.Therefore, $\mu_{A}(x y) \geq \min \left\{\mu_{A}(x), \mu_{A}(y)\right\}$, for all x and y in R_{1}.And, $v_{A}(x+y)=\max \left\{v_{A}(x+y), v_{B}(e+e)\right\}=v_{A x B}((x+y), \quad(e+e))=v_{A x B}[(x, e)+(y, e)]$ $\leq \max \left\{v_{\mathrm{AxB}}(\mathrm{x}, \mathrm{e}), v_{\mathrm{AxB}}(\mathrm{y}, \mathrm{e})\right\}=\max \left\{\max \left\{\mathrm{v}_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{B}}(\mathrm{e})\right\}, \max \left\{v_{\mathrm{A}}(\mathrm{y}), v_{\mathrm{B}}(\mathrm{e})\right\}\right\}=\max \left\{v_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{y})\right\}$. Therefore, $v_{\mathrm{A}}(\mathrm{x}+\mathrm{y}$ $) \leq \max \left\{v_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{y})\right\}$, for all x and y in R_{1}.

Also, $v_{A}(x y)=\max \left\{v_{A}(x y), v_{B}(\mathrm{e} e)\right\}=v_{\text {AxB }}((x y),(e \mathrm{e}))=v_{\text {AxB }}[(x, \mathrm{e})(\mathrm{y}, \mathrm{e})] \leq \max \left\{v_{\mathrm{AxB}}(\mathrm{x}, \mathrm{e}), v_{\mathrm{AxB}}(\mathrm{y}, \mathrm{e})\right\}=$ $\max \left\{\max \left\{v_{A}(x), v_{B}(e)\right\}, \max \left\{v_{A}(y), v_{B}(e)\right\}\right\}=\max \left\{v_{A}(x), v_{A}(y)\right\}$. Therefore, $v_{A}(x y) \leq \max \left\{v_{A}(x), v_{A}(y)\right\}$, for all x and y in R_{1}.

Hence A is an intuitionistic fuzzy subhemiring of R_{1}. Thus (i) is proved.
Now, using the property that $\mu_{B}(x) \leq \mu_{A}(e)$ and $v_{B}(x) \geq v_{A}(e)$, for all x in R_{2}, let x and y in R_{2} and e in R_{1}. Then (e, x) and (e, $y)$ are in $R_{1} x R_{2}$. We get, $\mu_{B}(x+y)=\min \left\{\mu_{B}(x+y), \mu_{A}(e+e)\right\}=\min \left\{\mu_{A}(e+e), \mu_{B}(x+y)\right\}=\mu_{A x B}((e+e),(x+y))=\mu_{A x B}[(e, x)+$ $(e, y)] \geq \min \left\{\mu_{A x B}(e, x), \mu_{A x B}(e, y)\right\}=\min \left\{\min \left\{\mu_{A}(e), \mu_{B}(x)\right\}, \min \left\{\mu_{A}(e), \mu_{B}(y)\right\}=\min \left\{\mu_{B}(x), \mu_{B}(y)\right\} \geq \min \left\{\mu_{B}(x)\right.\right.$, $\left.\mu_{\mathrm{B}}(\mathrm{y})\right\}$.Therefore, $\mu_{\mathrm{B}}(\mathrm{x}+\mathrm{y}) \geq \min \left\{\mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right\}$, for all x and y in R_{2}. Also, $\mu_{\mathrm{B}}(\mathrm{xy})=\min \left\{\mu_{\mathrm{B}}(\mathrm{xy}), \mu_{\mathrm{A}}(\right.$ ee $\left.)\right\}=\min \left\{\mu_{\mathrm{A}}(\mathrm{ee})\right.$, $\left.\mu_{\mathrm{B}}(\mathrm{xy})\right\}=\mu_{\mathrm{AxB}}((e e),(x y))=\mu_{\mathrm{AxB}}[(\mathrm{e}, \mathrm{x})(\mathrm{e}, \mathrm{y})] \geq \min \left\{\mu_{\mathrm{AxB}}(\mathrm{e}, \mathrm{x}), \mu_{\mathrm{AxB}}(\mathrm{e}, \mathrm{y})\right\}=\min \left\{\min \left\{\mu_{\mathrm{A}}(\mathrm{e}), \mu_{\mathrm{B}}(\mathrm{x})\right\}, \min \left\{\mu_{\mathrm{A}}(\mathrm{e})\right.\right.$, $\left.\left.\mu_{\mathrm{B}}(\mathrm{y})\right\}\right\}=\min \left\{\mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right\}$. Therefore, $\mu_{\mathrm{B}}(\mathrm{xy}) \geq \min \left\{\mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{y})\right\}$, for all x and y in R_{2}. And, $v_{\mathrm{B}}(\mathrm{x}+\mathrm{y})=\max \left\{v_{\mathrm{B}}(\mathrm{x}+\mathrm{y})\right.$, $\left.v_{A}(\mathrm{e}+\mathrm{e})\right\}=\max \left\{v_{\mathrm{A}}(\mathrm{e}+\mathrm{e}), v_{\mathrm{B}}(\mathrm{x}+\mathrm{y})\right\}=v_{\mathrm{AxB}}((\mathrm{e}+\mathrm{e}),(\mathrm{x}+\mathrm{y}))=v_{\mathrm{AxB}}[(\mathrm{e}, \mathrm{x})+(\mathrm{e}, \mathrm{y})] \leq \max \left\{v_{\mathrm{AxB}}(\mathrm{e}, \mathrm{x}), v_{\mathrm{AxB}}(\mathrm{e}, \mathrm{y})\right\}=$ $\max \left\{\max \left\{v_{A}(\mathrm{e}), v_{\mathrm{B}}(\mathrm{x})\right\}, \max \left\{\mathrm{v}_{\mathrm{A}}(\mathrm{e}), v_{\mathrm{B}}(\mathrm{y})\right\}\right\}=\max \left\{\mathrm{v}_{\mathrm{B}}(\mathrm{x}), v_{\mathrm{B}}(\mathrm{y})\right\} \leq \max \left\{v_{\mathrm{B}}(\mathrm{x}), v_{\mathrm{B}}(\mathrm{y})\right\}$. Therefore, $\mathrm{v}_{\mathrm{B}}(\mathrm{x}+\mathrm{y}) \leq \max \left\{\mathrm{v}_{\mathrm{B}}(\mathrm{x})\right.$, $\left.v_{B}(y)\right\}$, for all x and y in R_{2}. Also, $v_{B}(x y)=\max \left\{v_{B}(x y), v_{A}(e e)\right\}=\max \left\{v_{A}(e e), v_{B}(x y)\right\}=v_{A x B}((e e)$, (xy) $)=v_{A x B}[(e, x$ $)(e, y)] \leq \max \left\{v_{A x B}(e, x), v_{A x B}(e, y)\right\}=\max \left\{\max \left\{v_{A}(e), v_{B}(x)\right\}, \max \left\{v_{A}(e), v_{B}(y)\right\}\right\}=\max \left\{v_{B}(x), v_{B}(y)\right\}$. Therefore, $v_{B}(x y) \leq \max \left\{v_{B}(x), v_{B}(y)\right\}$, for all x and y in R_{2}. Hence B is an intuitionistic fuzzy subhemiring of a hemiring R_{2}. Thus (ii) is proved.(iii) is clear.

2.6 Theorem

Let A be an intuitionistic fuzzy subset of a hemiring R and V be the strongest intuitionistic fuzzy relation of R. Then A is an intuitionistic fuzzy subhemiring of R if and only if V is an intuitionistic fuzzy subhemiring of RxR .

Proof: Suppose that A is an intuitionistic fuzzy subhemiring of a hemiring R. Then for any $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are in RxR. We have, $\mu_{\mathrm{V}}(\mathrm{x}+\mathrm{y})=\mu_{\mathrm{V}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=\mu_{\mathrm{V}}\left(\mathrm{x}_{1}+\mathrm{y}_{1}, \mathrm{x}_{2}+\mathrm{y}_{2}\right)=\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}+\mathrm{y}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{x}_{2}+\mathrm{y}_{2}\right)\right\} \geq$ $\min \left\{\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{y}_{1}\right)\right\}, \min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{2}\right), \mu_{\mathrm{A}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{x}_{2}\right)\right\}, \min \left\{\mu_{\mathrm{A}}\left(\mathrm{y}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\mu_{\mathrm{V}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mu_{\mathrm{V}}\right.$ $\left.\left(y_{1}, y_{2}\right)\right\}=\min \left\{\mu_{\mathrm{V}}(\mathrm{x}), \mu_{\mathrm{V}}(\mathrm{y})\right\}$. Therefore, $\mu_{\mathrm{V}}(\mathrm{x}+\mathrm{y}) \geq \min \left\{\mu_{\mathrm{V}}(\mathrm{x}), \mu_{\mathrm{V}}(\mathrm{y})\right\}$, for all x and y in RxR. And, $\mu_{\mathrm{V}}(\mathrm{xy})=\mu_{\mathrm{V}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right.$ $\left.\left(y_{1}, y_{2}\right)\right]=\mu_{V}\left(x_{1} y_{1}, x_{2} y_{2}\right)=\min \left\{\mu_{A}\left(x_{1} y_{1}\right), \mu_{A}\left(x_{2} y_{2}\right)\right\} \geq \min \left\{\min \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(y_{1}\right)\right\}, \min \left\{\mu_{A}\left(x_{2}\right), \mu_{A}\left(y_{2}\right)\right\}\right\}=\min \left\{\min \left\{\mu_{A}\left(x_{1}\right), \mu_{A}\left(x_{2}\right)\right\}\right.$, $\left.\min \left\{\mu_{\mathrm{A}}\left(\mathrm{y}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{y}_{2}\right)\right\}\right\}=\min \left\{\mu_{\mathrm{V}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mu_{\mathrm{V}}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}=\min \left\{\mu_{\mathrm{V}}(\mathrm{x}), \mu_{\mathrm{V}}(\mathrm{y})\right\}$. Therefore, $\mu_{\mathrm{V}}(\mathrm{xy}) \geq \min \left\{\mu_{\mathrm{V}}(\mathrm{x}), \mu_{\mathrm{V}}(\mathrm{y})\right\}$, for all x and y in RxR. Also we have, $v_{V}(x+y)=v_{v}\left[\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right]=v_{v}\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\max \left\{v_{A}\left(x_{1}+y_{1}\right), v_{A}\left(x_{2}+y_{2}\right)\right\} \leq$ $\max \left\{\max \left\{v_{A}\left(x_{1}\right), v_{A}\left(y_{1}\right)\right\}, \max \left\{v_{A}\left(x_{2}\right), v_{A}\left(y_{2}\right)\right\}\right\}=\max \left\{\max \left\{v_{A}\left(x_{1}\right), v_{A}\left(x_{2}\right)\right\}, \max \left\{v_{A}\left(y_{1}\right), v_{A}\left(y_{2}\right)\right\}\right\}=\max \left\{v_{V}\left(x_{1}, x_{2}\right), v_{V}\right.$ $\left.\left(y_{1}, y_{2}\right)\right\}=\max \left\{v_{V}(x), v_{V}(y)\right\}$. Therefore, $v_{V}(x+y) \leq \max \left\{v_{V}(x), v_{V}(y)\right\}$, for all x and y in RxR. And, $v_{v}(x y)=v_{V}\left[\left(x_{1}, x_{2}\right)\right.$ $\left.\left(y_{1}, y_{2}\right)\right]=v_{v}\left(x_{1} y_{1}, x_{2} y_{2}\right)=\max \left\{v_{A}\left(x_{1} y_{1}\right), v_{A}\left(x_{2} y_{2}\right)\right\} \leq \max \left\{\max \left\{v_{A}\left(x_{1}\right), v_{A}\left(y_{1}\right)\right\}, \max \left\{v_{A}\left(x_{2}\right), v_{A}\left(y_{2}\right)\right\}\right\}=\max \left\{\max \left\{v_{A}\left(x_{1}\right)\right.\right.$, $\left.\left.v_{A}\left(x_{2}\right)\right\}, \max \left\{v_{A}\left(y_{1}\right), v_{A}\left(y_{2}\right)\right\}\right\}=\max \left\{v_{V}\left(x_{1}, x_{2}\right), v_{V}\left(y_{1}, y_{2}\right)\right\}=\max \left\{v_{V}(x), v_{V}(y)\right\}$. Therefore, $v_{V}(x y) \leq \max \left\{v_{V}(x), v_{V}(y)\right.$ \}, for all x and y in RxR . This proves that V is an intuitionistic fuzzy subhemiring of RxR. Conversely assume that V is an intuitionistic fuzzy subhemiring of $R x R$, then for any $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ are in RxR, we have min $\left\{\mu_{A}\left(x_{1}+y_{1}\right)\right.$, $\left.\mu_{\mathrm{A}}\left(\mathrm{x}_{2}+\mathrm{y}_{2}\right)\right\}=\mu_{\mathrm{V}}\left(\mathrm{x}_{1}+\mathrm{y}_{1}, \mathrm{x}_{2}+\mathrm{y}_{2}\right)=\mu_{\mathrm{V}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=\mu_{\mathrm{V}}(\mathrm{x}+\mathrm{y}) \geq \min \left\{\mu_{\mathrm{V}}(\mathrm{x}), \mu_{\mathrm{V}}(\mathrm{y})\right\}=\min \left\{\mu_{\mathrm{V}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mu_{\mathrm{V}}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}=$ $\min \left\{\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{x}_{2}\right)\right\}, \min \left\{\mu_{\mathrm{A}}\left(\mathrm{y}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{y}_{2}\right)\right\}\right\}$. If we put $\mathrm{x}_{2}=\mathrm{y}_{2}=0$, we get, $\mu_{\mathrm{A}}\left(\mathrm{x}_{1}+\mathrm{y}_{1}\right) \geq \min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{y}_{1}\right)\right\}$, for all x_{1} and y_{1} in R. And, $\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)\right\}=\mu_{\mathrm{V}}\left(\mathrm{x}_{1} \mathrm{y}_{1}, \mathrm{x}_{2} \mathrm{y}_{2}\right)=\mu_{\mathrm{V}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=\mu_{\mathrm{V}}(\mathrm{xy}) \geq \min \left\{\mu_{\mathrm{V}}(\mathrm{x}), \mu_{\mathrm{V}}(\mathrm{y})\right\}=\min \left\{\mu_{\mathrm{V}}\right.$
$\left.\left(x_{1}, x_{2}\right), \mu_{\mathrm{V}}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}=\min \left\{\min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{x}_{2}\right)\right\}, \min \left\{\mu_{\mathrm{A}}\left(\mathrm{y}_{1}\right), \mu_{\mathrm{A}}\left(\mathrm{y}_{2}\right)\right\}\right\}$. If we put $\mathrm{x}_{2}=\mathrm{y}_{2}=0$, we get $\mu_{\mathrm{A}}\left(\mathrm{x}_{1} \mathrm{y}_{1}\right) \geq \min \left\{\mu_{\mathrm{A}}\left(\mathrm{x}_{1}\right)\right.$, $\left.\mu_{\mathrm{A}}\left(\mathrm{y}_{1}\right)\right\}$, for all x_{1} and y_{1} in R. Also we have, $\max \left\{v_{\mathrm{A}}\left(\mathrm{x}_{1}+\mathrm{y}_{1}\right), v_{\mathrm{A}}\left(\mathrm{x}_{2}+\mathrm{y}_{2}\right)\right\}=v_{\mathrm{V}}\left(\mathrm{x}_{1}+\mathrm{y}_{1}, \mathrm{x}_{2}+\mathrm{y}_{2}\right)=v_{\mathrm{V}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=$ $v_{V}(x+y) \leq \max \left\{v_{V}(x), v_{V}(y)\right\}=\max \left\{v_{V}\left(x_{1}, x_{2}\right), v_{V}\left(y_{1}, y_{2}\right)\right\}=\max \left\{\max \left\{v_{A}\left(x_{1}\right), v_{A}\left(x_{2}\right)\right\}, \max \left\{v_{A}\left(y_{1}\right), v_{A}\left(y_{2}\right)\right\}\right\}$. If we put $x_{2}=y_{2}=0$, we get, $v_{A}\left(x_{1}+y_{1}\right) \leq \max \left\{v_{A}\left(x_{1}\right), v_{A}\left(y_{1}\right)\right\}$, for all x_{1} and y_{1} in R. And, $\max \left\{v_{A}\left(x_{1} y_{1}\right), v_{A}\left(x_{2} y_{2}\right)\right\}=v_{V}\left(x_{1} y_{1}\right.$, $\left.\mathrm{x}_{2} \mathrm{y}_{2}\right)=v_{\mathrm{V}}\left[\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right]=\mathrm{v}_{\mathrm{V}}(\mathrm{xy}) \leq \max \left\{\mathrm{v}_{\mathrm{V}}(\mathrm{x}), \mathrm{v}_{\mathrm{V}}(\mathrm{y})\right\}=\max \left\{\mathrm{v}_{\mathrm{V}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), v_{\mathrm{V}}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\}=\max \left\{\max \left\{\mathrm{v}_{\mathrm{A}}\left(\mathrm{x}_{1}\right), \mathrm{v}_{\mathrm{A}}\left(\mathrm{x}_{2}\right)\right\}\right.$, $\left.\max \left\{v_{A}\left(y_{1}\right), v_{A}\left(y_{2}\right)\right\}\right\}$. If we put $x_{2}=y_{2}=0$, we get, $v_{A}\left(x_{1} y_{1}\right) \leq \max \left\{v_{A}\left(x_{1}\right), v_{A}\left(y_{1}\right)\right\}$, for all x_{1} and y_{1} in R. Therefore, A is an intuitionistic fuzzy subhemiring of R.

REFERENCES

1. Akram.M and Dar.K.H, On fuzzy d-algebras, Punjab university journal of mathematics, 37(2005), 61-76.
2. Akram.M and Dar.K.H, Fuzzy left h-ideals in hemirings with respect to a s-norm, International Journal of Computational and Applied Mathematics, Volume 2 Number 1 (2007), pp. 7-14
3. Asok Kumer Ray, On product of fuzzy subgroups, fuzzy sets and systems, 105, 181-183 (1999).
4. Atanassov.K. Intuitionistic fuzzy sets, fuzzy sets and systems, 20(1), 87-96 (1986).
5. Atanassov.K., Intuitionistic fuzzy sets theory and applications, Physica-Verlag, A Springer-Verlag company, April 1999, Bulgaria.
6. Davvaz.B and Wieslaw.A.Dudek, Fuzzy n-ary groups as a generalization of rosenfeld fuzzy groups, ARXIV0710.3884VI(MATH.RA) 20 OCT 2007, 1-16.
7. Dixit.V.N., Rajesh Kumar, Naseem Ajmal., Level subgroups and union of fuzzy subgroups, Fuzzy sets and systems, 37, 359-371 (1990).
8. Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, July -1993.
9. Sivaramakrishna das.P, Fuzzy groups and level subgroups, Journal of mathematical analysis and applications, 84, 264-269 (1981).
10. Zadeh.L.A., Fuzzy sets , Information and control ,Vol.8, 338-353 (1965).
