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Abstract
In this work we give necessary and sufficient conditions for having a maximum principle for cooperative elliptic systems

involving p- Laplacian operator on the whole ", This principle is then to yield solvability for the considered cooperative

elliptic system by an approximation method.
Keywords: Maximum Principle, p- Laplacian Operator, Elliptic System, Approximation method.

1. Introduction
Thiswork is concerned with the general nonlinear cooperative elliptic system

Apu=am) lulPFu+bm ) h(uv)+f in R
Aqu=dn(X) V[T v+en () k(u,v) +g inR (1.1)
ux) >0, v(x) >0 as|x |> +o

Here A, u @ = div ([Vu[F™"Vu), 1< p < + «, is the P- Laplacian operator. The parameters a, b, ¢, d are nonnegative real
parameter. The functions h, k: l8?> — Il are continuous and have some properties like the weight functions m, my n, n, which

will be specified laterThe aim of this work is to construct a Maximum Principle with inverse positivity assumptions which
means that if f, g are nonnegative functions amost everywhere in R, then any solution (u, v) of (1.1) obey u>0; v>0aein
RV.It is well known that the maximum principle plays an important role in the theory on nonlinear equations. For instance it
is used to access existence results of solutions for linear and nonlinear differential equations. [1-15]. Most of the work deals
with Maximum Principle fof a certain class of functions h and k. This work deals with a more general class of functions h, k.
For specific interest for ourpurposes is the work in [7] where a study of problems such as (1.1) was carried out in case of Q
in the presence of the weights m, m; n, n; with the particular case of h (s, t) and k(s,t).Clearly, our work extends the work [7]
first by considering a problem with weights and next by dealing with a more general class of function h, k in the of whole of
RN. For instance this result can apply for the case.

5% gretant|F e Pt for t >0, seR
h(s t)= ls|®[¢lf £ fort<0,se R

£ T g ctant|P fors>0,t e R
k(s t) = |s|*st|® fors<0,te R

which is not taking into account in [7].
The remainder of the work is ofganized as follows: In Preliminary Section 2 we specify the required assumptions on the data
of our considered problem and-we briefly give some known results relative to the principal positive eigenvalue of the p-
Laplacian operator. In section 3, the Maximum principle for (1.1) is given and is shown to be proven full enough to yield
existence results of solution for (1.1) in Section 4 by using a approximation method.

2. Preliminaries
Throughout this work assume that, 1 < p, g < nand

+ H1
(Bl)(x,BZO;b,CZOand:_'1+|‘T =1
E
(B2)f20,fe L®7 (RY;g>0,geL@ RYwith2+> =241 =1;
P F 44

o

(B3) m, my, n, n; are smooth weights such that m, n>0 me L{,, (R) n LVP(RY),

* ﬁ'!'! * 'lh- . .
neLi, (R n LV(RY), and 0< my, m< m P n FD Herep' = il __4—""- denote the critical Sobolev exponents
M MY

of p and q respectively; p' isthe Holder conjugate of p.
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(B4) The functions h and k satisfy the sign conditions:
th(s t) =0, sk(s t)>0for(st) eR?and thereexist I'> 0 such that

- 0 | B
h(s )<-h(stfort>0,se R;  h(st) =3 |s|%[t|]t fort<oseRr k(s t) < & (s
t)fors>0,te R; k(s,t)=1“°‘+‘3+2'q|s|“s||_t fors<0,te R

We denote by WP (RY) (with 1 < s < N) the completion of € (R) with respect to the norm || u| Wi (RN =
B L

(Julval® ) wg™ (RY) is a reflexive Banach space and it can be shown [8] that W ¥ (RY) = { ueL™ (RY) : Vue (L7
(R™) "} .

Here and henceforth the Lebesgue norm in L” (R") will be denoted by || .||, and the usual norm of wi,* (RY) by || .|| .The
positive and negative part of a function u are defined respective as u™ = max {u, 0} and u : = max {-u, O}. Equalities (and
inequalities) between two functions must be understood a.e. (R")

Consider the eigenval ue problem with weight g. For a given geLV® (R™) ~ L”(RM) ,g (x) aein RN it was known
that the eigenvalue problem.

A= R () [Vl u inRN }
u(x) > 0,as x| > +o inR. (2.1)

admits an unique positive first eigen value A; (g, p) with a nonnegative eigenfunction.

Moreover, this eigenvalue is isolated, simple and as a consequence of its variational characterization one has A, (g,
p)_I'R,-,- u () ulP< JR¥ [Vul® % ue "p"lfaj'p (RY
Now we denote by @ (respectively W) the positive eigenfunction associated with
A1 (M, p) (respectively A, (n, q) normalized by [ ¥ m (x) [®[¥ =1 (resp .rﬂ-'-' X [¥lH=1).

The functions ® and ¥ belong to iy (R™) and by the weak maximum principle,
& ik . . .
PN 0and % < 0on RNwhere v is the unit exterior normal.

3. Maximum Principle

We assumethat 1 < p, q < N and also that hypothesis (B5) is satisfied. We begin by consider the problem
-Au=pm(x) | ul P h ) inRN

u(x) - 0, aslx| >+ (3.1
The following result was proved in [9, 10]
Preposition 2.1. For al r> 0, any solution u of [2.1] belongsto C 'Y (B,), where

vy= v(r) €]0,1] are B, isthe ball of radiusr centred at the origin.
inflc, (x) supk, (x)

Leta (r): = B, and a(r):= B, (3.2
o el o WELEEL L g urifEs

Y P} TR 4l -{“J TR AC it e
where k; (x): = { ) J [ 3 r_x:_q] ke (x) 1= s () L}._»_x:_q] :
We denote by ay,, = lim,_, +, a; (r) and &, = lim,_, 4, & (r) . Let set © = S (3.3

Haso
The following ingqualitiescan easily be proved
0= foralr>0ado<o<1 (3.4)
-

We now turn to our first main result
A Maximum Principle holds for the system (1.1) if f >0 and g >0 impliesu >0 and v>0 aein R™

By asolution (u, v) of (1.1), we mean a weak solutioni.e., (u, v) e\l"rT; PRY x "u"'r';'q (R™) such that

_J'Rp.-l'i'ul-”_EVu VW = '.['R,,- | [am ()] ul P iwt by () h(u,v) w+fw]
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J'Rﬂlvlq_:Vv.Vz:.j'Rﬂl [dn(x)|v |E:_: vz+cng (X) k (u,v) z+gz]

for al (w,2) eWo P (RY) x W9 (RY). (3.5)

Note that by assumptions (B1) — (B4), the integralsin (3.5) are well — defined Regularity results from [12,13], weak solution
(u,v) belong to c{(RY) x c'(RY). It is also know, that a weak of (1.1) decays to zero and infinity. Now ready to state the
validity of the Maximum Principle for (1.1)

Theorem 3.1 Assume (B1) — (B4). Then the Maximum Principle holds for (1.1) if

(CH)r(mp)>a . (C2) 1 (n, @) >d, o .

(C3) Ai(m,p) _a]k“_'l_-fP A (0, Q) _d]':F""}-.- fa, plotilfp .(F+1)/q

Conversely if the Maximum Principle holds, then Conditions (C;) — (C,) are satisfied, where  (C4) ( Ay (m, p) —
ajllﬂ'*i_:-"P A (, Q) _d]uiﬂ_:.-'q > hieFiip . (F+llfg

Proof: The proof is party adapted from [1, 6] Necessity Part:

Assume that the Maximum Principle holds for system (1.1) If A, (m, p) < athen the functionsf : (a-A; (M, p) M (x)
®"* and g : = 0 are nonnegative, however (-®, 0) satisfies (1.1), which contradicts the Maximum Principle. Similarly, if A,
(n,g) <dthenf:=0andg:= (d-A; (n, Q) n(X) Wi e nonnegative functions and (0, -¥) satisfies (1.1), which isa
contradiction with the Maximum Principle.

Now, assume that A, (M, p) > &, A1 (0, q) > d, and that (C4) does not hold; that is, (C4) 1y (m, p) —a) ©@DP
L1 (n, p) =d) (B+Dla @ p =+Dp ¢ B+Dip

(1l F (B+1117

ot A= ('n: g ]U:: 1i1fp Be (_':.“-n;.‘-li" 1i1/g

o | =
Then by (C4) AB <6 which implies
infk, (x), supk, (x)
N O .

{:'I I —_
A< " , where ©,= RN (3.6)
Hence these exists £ R such that A &, < &< (1/B) ay.. .Let ¢, cbe two positive real numbers such that & =
&L L
arfe v .
EEF-; . Using (3.6), (B1) and the above expression of & we have

D (M, p) -] m (x) [e® (]P < T ¥ Phmy (x) [o @ ()]% [c ¥ (9]° for al x € RY [A4 (n, p) -d] n (x) [c2¥

) ] T8 oy (0) [e, @ (9] [, (0]° forall x e RY
Furthermore, using the inequalitiesin (B4), we obtain
(A (M, p) —a] m(x) [c1® (X)] 1 —hm, (x) h(-c, @, -c, ¥) >0 foral x e RN and
A1 (0, 9) =d] N (X) [c¥ (%) T ¥ cny (%) k(-c, @, -C, ) >0 foral x e RM
Hence 0<-[A, (M, p) —a] m (X) [c:® (X)]** -bmy (x) h(-c, @, -c, ¥) =f, forall x e RY.
0<- [ (n, @) =d] N (X) [C,¥ (¥)]*" - cny (X) k(-c, @, -c, ¥)=g, foralx e RY.
are nonnegative functions and (-c; @ ,-c, ') isa solution of (1.1). Thisisa contradiction with the Maximum Principle.

Sufficiency Part : Assume that the conditions (C1) — (C3) are satisfied.
So for f >0, g > 0, suppose that there exists a solution (u, v) of system (1.1).
Multiplying the first equation in (1.1) by u~ and the second on by ¥~ and integrating over R" we have,

ol vum 1P =alm oo Tu™|%-b ¥ my ) hu vy o= o fu
IRN [vv=1%=d M0 Tv=] e Y 00 k(v v [N g™
Then, using (B4), [ | vu™["<als¥m (9 |u™1%b " my g h(u,-v7) u”

Jox | vl T<dlneg vl e )N n o k (U v) v
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h (u-v) U= =L (et (ymypst K (-u,v) v = —=T#FF378 iyl (37 ang hence [N vu| F<

alm | ul T+ p T#EFEP [0 oo u) vy

— |4 -4 0 ¥ i —\a+ —\B+
W ve™ I <dfn [v] Te e o TN b oo u)e i)

Combining the variational characterization of A, (m, p) and A, (n, q) with the
Holder inequality and assumption (B3), we have

[e+1)/
(}tl(m,p)-a)J'RN mma(x)| a-| Peprotbte-p (JrRN - {x]| al p) g ( 8

gy EFLp
A9

o +1)f ) (BE+1))
(A(n,g)-d) jﬂw nx) | v~ | “<cratbtz-a ( [RN m () u”| P] : Up.“ n (%) v H] i

which implies

L B+l Lo
{J'RN m ()] u”| P) F[O\al(m:p)'a)(.[ﬂﬂ m (x) u P) q-bT"HEh e
1l
(o GOl 1

r o ) (a+3]/p
— et e (J'F.N I {x}| u- |P)

w [i5+1]fq

(J'F.” 1 Lx}| vl LJJ

{o+l)/p

(s ) (fonss Gl vl 0.

(3.7)
Letusshowthatu =% =0
If ¥ 1 ) lu™ | =0 or -IRN nx) | v | "= 0 then, using the fact that m > o, n >0, and (3.7) we obtain U = ¥ =0,

which implies that the Maximum Principle holds
o If RmM)IulP=0and [RY n(x)|vlP =0, then we have

(F+ijfq e P (E+1l/fg
Aa(myp) -a) ( = u| Pj < pPotBHEP (IRN (=) v | :;)

oo wylEEl/e B ey

xl(n,q)-d)( Jown ()| vl ) < c[HHBtEe ( S ()l u | ) Whichimplies
@t &1 L
(M(m,p)_a)(owl)/p(-[RIN m {h}l u_| P) By < b((x+1)/p I-».&+B+ Z-p (a+1]/p (.[ - {K}l = | I-,Ij By
a i+ o1 il

(a(n,g)—d)P+r (f wan (30| v |q) P4 o Bryq poBEE—q IB¥lAq (fnmn () ul p:] B
Multiplyi ng the two inequaliti % above and using the fact that
(coHp+2-p) == + (oc+P2- O|S) — -~ (atp+2) { =+ —) (U+1) - (B+1) =0 (38)
-1 -1

w1

Ou(mp)-a)®  (u(ng-d)x (([Rmn ()l u “) (J’RN n (x) vl ”))T

uti 1
w1 i

<b® t_-i'-li ((J'RN m {x]l ul [J:] (fnuu (x]| vl I']:]JTTandthen

ot i

u| pj(fﬂu ()l vl L]DT " <o

(2 ey -a)® amay-a) = —b % o5 ) x((f
Since (C,) — (Cy) are satisfied and m, n > 0 the inequality above is not possible.
Consequently ™= v~ =0 and the Maximum Principle holds.
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4. Existence of solutions
Theorem 4.1 Assume (B1), (B,), (Ca), (C,), (Cs) are satisfied. Thenfor f e P~ (RY) andg eL¥ (RY), system (1.1) admits
atleast one solution in m-';"’ (RY) xm-';'q (RY).
The proof will be given in several steps and is partly adapted from [1,6,15]. To prove this theorem it requires the lemmas

state below.We chooser r > 0suchthata+r>0andd+r >0
Hence (1.1) reads as follows

-Agu+rm (x) | ul P =@ meolul T utbn 0 h(u, v) + Fin RY

Ay +m )| vl P vz ek v) H@d+n 0) lv] T vg inRY (4.1)

ux) >0,v(x) > 0 as| x| >+
For 0 < e< 1, now consider the system

—Apue+rm(x)|uelp - UE=L(X, u.v.) +finRY

-Aqve + m(x) | v, |97 u. = h (X, u.ve) +ginR

U - Vve > 0 as| x| -+ (4.2)
- = =T

where 1 (x,s8)=@+m)|s| " s@+e®®ls|T )y bmh(s Y @ +elhs ),

LS = ()] T @+ |2 157 % ey 0k (s 1) (1+e [ K (s 1))
Lemma 4.2
Under the hypothesis of theorem (3.1) System (4.2) hasa solution in "u"l;";“ ' (RN)x“’; TRY).

Proof : Let >0 befixed
. Construction of sub — solution and super — solution for system

-Apu + rm(x) | ul P v=p(xuv) +finRY
AV + meolv]® v=p(xuv) +ginR" (4.3)

u(x) >0,v(x) >0 asl X —+w

From (B3), the functions } and . are bounded ; that i, there exists a positive constant M such that | (x, uv)l <M, [ (
X, uv)l <M Vv (u, V) e\:"lr’;":' (RY) x‘lﬂr’;'q (RY).

Let u’ e“’;'p (RY) (respectively v° e“ﬂ'q (RY) be asolution of -A,u° + rm (x) | | P70 =M +f (respectively - AN+
m) V] T V=M +g)

It was known that uo u°, v, V° are exists, moreover we have

-Ago + rm (%) | o | " - L(XUv) - f<0 v ve [voV

A+ 1rm (x) | 0| T h (x,l’v) - 20 v ve [voV]

-AqVo+m (x) | Vo | T - L (X Uuvg) - g<0 Vv ue [

AV +m (x) [V - Vo- ’k (x,uv®) - g=0 Vv ue [ugu’]

S0 (U, u%) and (v Vv°) are sub — super solutions of (4.3)

. Let K = [ugu’] x [vov% andlet T : (u,v) — (w, 2) the operator such that
—Aqw+rm(x)|W|IJ B w= (X uv) +f inRY
Az+m )|zl U= L(xuv) +g inRY (4.4)

w (x) >0, z(X) >0 as| x| > +o
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. Let usprovethat T (K) < K. If (uv) € K then
(-ApW-Ap £°) +1m (x)) (|1w|Ij “w—| E_D |p LE_D‘J:[ ';(x, uv) -MJ) (4.5)

Taking (w-Z°)* astest function in (4.5), we have
[ (vw ] wwd 728 P77 w0y wiw -0 r fow moo(lw | P we B2 1P £9)x
(w- i:D)*: j“:o; [h (x, u, v) = M)] (w -Z %*< 0. Since the weight m is positive, by|the monotonicity of the functionss — | s

| P and that of the p —Laplacian, we deduce that the last integral equal zero and the (w -£_D)+ =0. Thatisw<

2% Similarly we obtain =% < w by taking (w - =) astest function in (4, 5). So we have S W #%and n, < z<n’and the
step is complete.

e Toshow that T is completely continuous we need the following lemma.
Lemma4.3 If (U Vo) — (u,v)inL® (R™) =L% (RY)asn —» wothen

p=i B

_ Up! i i} _ Uy u o s
(1) X,=m(x) T ] Convergesto X =m(x) —:H_ B, T inL¥* (H")asn — .
where p* -5

P~ Nipg-1+p

— biug gl — _ hiww] gs
(2) Yo=my(X) ey r—— Convergesto Y =my (X) 27 & b Gavd) in L¥* (H™)asn— .

Proof : Sinceu, — uin L”' (RY), there exist a subsequence till denoted (u,) such that

U () — u)ae.on RY, lu, ()| <nx ae onRVwithn eL¥ (RY) (4.6)
o F_..I:.'l
n ()1+E-_I.Fuj_..—_

w (=) F_:T_i‘_ x)

Then X, (X) = X (X) =m(x) = — ae onRY,
1+ %P afx) BT
I 1 I p-1 c g™ N
| Xl <l ml ], Tudl ] <|lmll,, Inl inL¥ (RY)

Thus, from Lebesque’s dominated convergence theorem one has

P o
Xn—= X =m(x) u - UF__ inL¥ (RY) asn — oo s0(1)isproved

I+ E " -

Moreover, sincev, — vin L% ) (RY) there exists a subsequences still denoted (v,,) such that
Vo (X) > v(x)aeon(RY), v,(x) <&(x) aeonR"with tcLS (RY (4.7

| wspia T
Using (B4), one has| Y. <l myl | ol (un vl < T 278 [ my || Il e | inLE RY) Let Y, = m (%

b {ugy. ) b {ufx)w (x)]
T RYAE . =
1+€ hiupgy,) »Then Y (x) = Y (x)=my (X) 1+ hiaix],v (X))

ae inRY, asn— o So, we can apply the

b {alx)liv (x]] . "
' in LFP* (RY) as

Lebesgue’s dominated convergence theorem and then we obtain Y, (x) —Y (X)= my (X) 11E haldv ()

n— o
Remark 4.4 We can similarly provethat, asn — oo,

— , —1 —& ) ot . . "
| %, (1+»;:1-“‘H.fﬁ|Ei ]_1—>n(x)|v|q v (1+eifay ° Tt in LY RY,

7 in LY RY

n(x) | va

Ny (<) K (Un Vi) (14 LR (ug vy 07 5 0 kuv) @rel k(o
To complete the continuity of T. Let us consider a sequence (i, v, )
suchthat (1, v,) — (U v)in LERY), x LY(RY, as — o. Wewill prove that (Wp, z) = T (Un Vi) —(W, 2) = T (u,
v). Notethat (wp, z,) = T (up, Vy) if and only if
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(C-BpWo+m () [ wa |77 W) - C-apwa rm ) w7 w) = 1 (X U Vo) - (X, uY)
= (atr) (Xo- X) +b(Yn-Y)
Multiplying by (w,- w) and integrating over R" one has

_{R,,-ﬂ anlp_x VW, -| leF_EVw) V (W - W) + r_{R,.- m()( wl P Wi - | wnlp_: W) (Wp-W)
= (atr) fﬂu (Xi-X) (Wn-w)+b fﬂu (Yo Y) (Wn - W)

<tarn) (Sl X X] ¥ 372 (ol wy, — ol YR [ Yo ¥] P 32 ([ ] w, — wl®)3®
Combining lemma 4.3 and the inequality

=] o ] gf2 1_5_1"2
-yl Foe (( 1Mk 2-;—||y||p y{’_x—}r]) (||2-;||P-r||y ||P) (4.8)
We can conclude that w, — win "u'l-i'ﬂi'p (R™) when n — «.Similarly we show that z,— zin W;‘q (RY) asn — o and then,
the continuity of T is proved.

Compactness of the operator T. Suppose (u,, V) a bounded sequence in "u"'..’ﬂi*p (RY) xWS‘q (RY) and let (W, z,) = T(Up,
vy). Multiplying the first equality in the definition of T by w, and integrating by parts on R", we notice the boundness of wj,
in W;‘p (RY) and then we use the compact imbedding of W; P (RYin L¥RY, to conclude. The same argument is valid

with (z,) inin L”', (R). Thus T is completely continuous. Since the set K is convex, bounded and closed in L""(RN) X

L”'(RN), the Schauder’s fixed point theorem, yields existence of a fixed point for T and accordingly the existence of solution
of system (4.2).

Proof of theorm 4.1 The proof will be given in three steps.

Step : 1 First to prove that (u.. v.) isbounded in W;‘p (RY) xWS‘q (RM). indeed assume that

W

L]

Nucll > worllvel] > wase — 0.Lettemax{||u6||;||v6||},wew5=:“’. 2. =

+F ¢t 24

Wehavel| wd| < 1and|l z || < 1 witheither | [wd| <1 or|l z.|| = 1.
Dividing the first equation in (4.2) by (t.}*'% we obtain

-z -z -1 g . ;
-Ap W, + 1m (X) | wl?  w = @@ mx) | wl P 1+ e”u P Y+ 21 bmy (x) h (tXP w9z (+

elhuovy) )72+ t;-'l’. f.
Similarly dividing the second equation in (4.2) by (tejl. g S
-Agze +m(X)| z| o we=(@@+)n x| w.] “WE 1+ ¥ u 5‘+1]_]_
+I:;1_.-q' cny (x) k (t;:p W tii'q z.) (1+ e| k(U€'V€)| ]—1+ t;l_-'q 9.
Testing the first equation in the above system by w. and using (B4), we obtain
Iﬂwlvwgl "< a_jrﬂw m(x) | wel Py protBtze -Irﬁ“ m(sz_;- vl w1 (x)\B+17al ol b1

+ tEI-r-" fRNIf| | wd ., which, by the Holder inequality, implies
.IRN |VWEI [-IS aJ—RN m “_El B + bl—f.t+£+'r.'—p“'RN m| WEI [-'j:x-i-i_-*p “'RN n WEI Li;.lliu-“q

+t2M2 |t @) zd | p*
Using the variational characterization of 1, (m, p) and the imbedding of ‘W_; P (RY)in L¥ (RY).onehas

e o

1 -+

© || w| e pr B -

hig(mp] By (mp](THP g g EELlf

w1 F <
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Inasimilar way, it can be obtain
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Multiplying term by term the expressionsin (4.10) and (4.11), and using (3.8) we obtain
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Since conditions (C;) — (C5) hold, one haslim sup || w | F o limsup|| z | e 0.Thisyields a contradiction since| | w | = 1

or || w| =1, and consequently (u., v.) isbounded in ‘lu"l.-’ﬂ1 Q) x t".-’; Q).

k1

Step 2. {(&=F u; =4 v.) convergesstrongly in W; PRY x W; 9(RY). when e approaches 0. It is obvious due to the

boundness of (U, v.) in WQ'F(RN) x wj ARM).

Step 3. Now, from the strong convergence of (uc, v.) in "p"l.-’; + (RM) x ‘L"I.-'; o (RY) and aclassical result in nonlinear analysis,
we obtain

Ay Uo+am () Ug | T o+ bmy m(x) h (Up + vg) + f in R"

-AqVo=dn ()| vo | EI_iuo+ cn k (x) h(up+vg) +ginRY

U(X) = 0,vo(x) >0, as|¥ — +w .Thiscompletes the proof
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