

C2 – LIKE AND P2 – LIKE FINSLER SPACES

Ankit Maurya* K.B. Gupta** Jitendra Singh***

*Research Scholar in Mathematics, Singhania University, Pacheri Bari (Jhunjhunu), Rajasthan. **Department of Mathematics, St. Andrew's P.G. College, Gorakhpur, (U.P.) ***Department of Physics, Sri. Lal Bahadur Shastri Degree College, Gonda (U.P.)

Abstract

In the present communication certain properties of C2- like Finsler space have been studied. Necessary and sufficient conditions have been derived under which a C2-like Finsler space is a Landsberg space along with that a C2- like Finsler space is a P^* - Finsler space and a C2- like Finsler space is P2- like. In the last section of this communication studies have been carried out in a "Semi P2 - like" Finsler space. The necessary and sufficient conditions under which a semi P2 - like Finsler space is a Landsberg space, a non- Landsberg P^* -Finsler space is semi P2- like, a non- Lendsberg P2- like Finsler space is semi P2 like, a semi P2 like Finsler Space is P- symmetric have been derived.

1. Introduction

Matsumoto and Numata [6] have introduced the notation of C2 – like Finsler space. The (v) hv - curvature tensor of a C2-like Finsler space can be introduced in two different forms. With the help of these forms we can define semi-P2- like and P_{λ} - Finsler spaces. A generalization of P* [3] and semi-P2-like Finsler space is a P_{λ} -Finsler space F_n (n>2). The present paper has been divided into three sections of which are the first section is introductory. In the second section certain properties of C2-like Finsler spaces have been studied. Necessary and sufficient conditions have been derived in this section under which a C2-like Finsler space is a Landsberg space along with that a C2 - like Finsler space is a P*- Finsler space and a C2-like Finsler space is a P2- like and in this continuation have also established that if the hv-curvature tensor of a Finsler space is written in the form

where

$$\begin{split} P_{hijk} &= C_j C_k E_{ih} + C_j M_{khi} + C_k M_{jhi} ,\\ E_{ih} &= \frac{1}{c^2} \left(C_{i|h} - C_{h|i} + C_h Q_i C_i Q_h \right) ,\\ Q_i &= \frac{1}{c^2} \left(2C^i C_{1|i} + C^4 C_i \right) ,\\ M_{khi} &= \frac{1}{c^2} \left(C_{k|h} C_i - C_{k|i} C_h \right) , \end{split}$$

and

then its (v) $h\nu$ - torsion tensor can be written in the form

where

$$P_{ijk} = G_i C_j C_k + G_j C_k C_i + G_k C_i C_j - \phi C_i C_j C_k$$
$$C_i = \frac{1}{c^2} P_i \qquad \text{and} \qquad \phi = \frac{2}{c^2} C_i C^i$$

In the third section of this communication studies have been carried out in a "Semi P2-like" Finsler spaces. The necessary and sufficient conditions under which a semi P2-like Finsler space is a Landsberg space, a non-Landsberg P*- Finsler space is semi P2-like, a non – Landsberg P2-like Finsler space is semi P2-like, a semi P2-like Finsler space is P-symmetric have been derived.

Let F_n be an n-dimensional Finsler space equipped with the fundamental function $F(x, \dot{x})$. The (v) hv- torsion tensor P_{jk}^i and v-curvature tensor S_{hijk} are respectively given by the following relations

$$(1.1) P_{hkm}^{i} = \frac{\partial \Gamma_{hk}^{*i}}{\partial x^{m}} - C_{hm|k}^{i} - C_{hr}^{i} P_{km}^{r},$$

$$(1.2) S_{hkm}^{i} = C_{rk}^{i} C_{hm}^{r} - C_{rm}^{i} C_{hk}^{r}.$$
and
$$(1.3) (a) P_{hijk} = g_{im} P_{hjk}^{m}, \qquad (b) S_{hijk} = g_{im} S_{hjk}^{m}.$$

We now propose to introduce the special Finsler spaces which shall be defined with the help spacial forms of curvature and torsion tensors.

In general $g_{ij(k)} = -2C_{ijk|o}$ in a Finsler space where (k) stands for Berwald's process of covariant differentiation and suffix o denotes the transvection with respect to \dot{x}^i . A Landsberg space is characterized by the condition $g_{ij(k)} = 0$ such a space is also characterized by the condition

$$(1.4) \mathbf{P}_{ijk} = \mathbf{C}_{ijk|o} = 0.$$

The notion of P*- Finsler space has been introduced by Izumi [3]. A Finsler space F_n (n>2) with the non-zero length C of the torsion vector C^i is called a P*-Finsler space, if the (v) hv- torsion tensor of the space is written in the form

$$(1.5) \mathbf{P}_{ijk} = \lambda \mathbf{C}_{ijk}$$

where $\lambda(\mathbf{x}, \dot{\mathbf{x}})$ is a scalar function given by

(1.6) (a)
$$\lambda = \frac{1}{c^2} P_i C^i$$
, (b) $C^i = g^{ij} C_j$,
(c) $C_i = C_{ij}^j$, (d) $P_i = P_{ij}^j = C_{i|o}$,
(e) $C^2 = g^{ij} C_i C_j$.

The P-symmetric [6] Finsler space is a special Finsler space which is defined with the special form of $h\nu$ curvature tensor P_{hijk} . Such a space is characterized by the relation

$$(1.7) \mathbf{P}_{hijk} - \mathbf{P}_{hikj} = 0.$$

A non-Riemannian Finsler space F_n of dimension n (n>2) is called P2-like [7], if there exists a covariant vector field λ_i such that the hv-curvature tensor P_{ijkl} of F_n is written in the form

(1.8) $P_{ijkl} = \lambda_i C_{jkl} - \lambda_j C_{ikl}$.

In such a Finsler space the $h\nu$ - curvature tensor P_{hijk} of F_n vanishes, or the curvature tensor S_{hijk} of F_n vanishes.

A Finsler space $F_n(n \ge 2)$ with $C^2 \ne 0$ is called C2- like [6], if the (v) hv-torsion tensor C_{ijk} is written in the form (1.9) $C_{ijk} = \frac{1}{r^2} C_i C_j C_k$.

It follows from (1.9) that a non-Riemannian Finsler space F_n (n ≥ 2) is C2- like if and only if C_{ijk} is written in the form

 $(1.10) C_{ijk} = L_i C_j C_k + L_j C_k C_i + L_k C_i C_j \quad ,$

where $L_i = (\frac{1}{3C^2}C_i)$ are the components of a covariant vector field.

2. Properties of C2-Like Finsler Spaces:

The h-covariant differentiation of relation (1.9) with respect to \mathbf{x}^{i} and thereafter transvection with respect $\dot{\mathbf{x}}^{i}$, gives

$$(2.1) P_{ijk} = G_i C_j C_k + G_j C_k C_i + G_k C_i C_j - \phi C_i C_j C_k$$

where, we have written

$$G_i = \frac{1}{c^2} P_i$$
, $\emptyset = \frac{2}{c^2} G_i C^i$ and P_i is defined by (1.6d).

The relation $P_{ijk} = 0$ directly gives $P_i = 0$. On the other hand, the condition $P_i = 0$,

in view of (2.1) yields $P_{ijk} = 0$. Thus, we can state:

Theorem(2.1)

The necessary and sufficient condition in order that a C2-like Finsler space be a Landsberg space is given by $P_i=0$.

In view of (1.5), a necessary condition for a Finsler space to be P*- Finsler space is that $P_i = \lambda C_i$. But this condition is not sufficient. However, it has been observed that if F_n is C2-like than by virtue of (2.1), $P_i = \lambda C_i$ is a sufficient condition in order that the space be P*. Hence, we have

Theorem (2.2)

The necessary and sufficient condition in order that a C2- like Finsler space $F_n(n>2)$ be a P*- Finsler space if and only if $P_i = \lambda C_i$ where λ is given by (1.6a).

On substituting from relation (1.9) and (2.1) into (1.3a) we get the following form of hv- curvature tensor

 $(2.2) P_{hijk} = C_j C_k E_{ih} + C_j M_{khi} + C_k M_{jhi},$ where (2.3) $E_{ih} = \frac{1}{c^2} (C_{i|h} - C_{h|i} + C_h Q_i - C_i Q_h) ,$ (2.4) $Q_i = \frac{1}{c^2} (2C^i C_{1|i} + C^4 G_i) ,$ (2.5) $M_{khi} = \frac{1}{c^2} (C_{k|h} C_i - C_{k|i} C_h) .$

After contracting (2.2) with respect to \dot{x}^{h} and making use of equation (1.1), (2.3), (2.4) and (2.5) thereafter, we get the relation (2.1) and with the help of this observation, we can state that:

Theorem(2.3)

If the hv-curvature tensor of a Finsler space is written in the form (2.1), then its (v) hv-torsion tensor is written in the form (2.1).

The following corollary can be easily deduced from (2.2).

Corollary(2.1)

The hv-curvature tensor of a C2-like Finsler space F_n satisfies the identity $P_{hijk} = P_{hikj}$, that is a C2 –

like Finsler space is P-symmetric.

Keeping in mind the relations (2.2), (2.3), (2.4) and (2.5), we have

$$(2.6) P_{hijk} = K_h C_{ijk} - K_i C_{hjk} + M_{hijk}$$
$$K_h = -Q_h$$

where

and

$$M_{hijk} = \frac{1}{C^2} (C_{i|h} - C_{h|i}) C_j C_k + C_j M_{khi} + C_k M_{jhi}$$

With the help of relations (1.7a) and (2.6) we can therefore state:

Theorem (2.4)

The necessary and sufficient condition in order that a C2-like Finsler space F_n is P2-like is that there should exists a covariant vector field U_i such that

$$\boldsymbol{M}_{hijk} = \boldsymbol{U}_h \boldsymbol{C}_{ijk} - \boldsymbol{U}_i \boldsymbol{C}_{hjk} \ .$$

3. Semi P2-Like Finsler Spaces

We now consider an n-dimensional Finsler space F_n with the (v) hv- torsion tensor P_{ijk} of a special form to be given by

$$(3.1) P_{ijk} = B_i C_j C_k + B_j C_k C_i + B_k C_i C_j \ , \label{eq:starses}$$

International Journal of Multidisciplinary Research Review, Vol.6, Issue-6, June-2020, Page - 61

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

where B_i is an indicatory vector field positively homogeneous of degree two in its directional arguments. From (3.1), it can easily be obtained that the vector B_i can be given by

(3.2)
$$B_i = \frac{1}{C^2} (P_i - \frac{2}{3C^2} P_k C^k C_i),$$

for $C^2 \neq 0$. Such a situation has arrived in the case of C2-likeness. Therefore, we given the following definition along with the adjoining remark.

Definition (3.1)

A non-Riemannian Finsler space F_n ($n \ge 2$) is called semi P2-like, if the (v) hv-torsion tensor P_{ijk} of F_n is written in the form (3.1).

Remark (3.1)

In a Riemannian space, we have $C_{ijk} = 0$, which gives $C_i = 0$ and $C^2 = 0$ in view of (1.6c) and (1.6e). Conversely, it $C^2 = 0$, that is $C_i = 0$, then Dickey's theorem

shows that F_n is necessarily Riemannian. Thus we conclude that a Finsler Space

F_n is Riemannian if and only if $C^2 = 0$.

All these observation clearly indicate that in a semi-P2-like Finsler space, $C^2 \neq 0$. In two dimensional Finsler space F_2 , we can easily get the following [8]

(3.3) (a)
$$C_{ijk} = \frac{J}{L} m_i m_j m_k$$
,
(b) $C_i = \frac{J}{L} m_i$, (c) $P_{ijk} = \frac{J_{|o|}}{L} m_i m_j m_k$,

where m_i is a unit vector orthogonal to supporting element and J is the principal scalar. The relation (3.3b) and (3.3c) show that in every two dimensional Finsler space P_{ijk} can be expressed in the form (3.1).

Therefore ,we can state:

Corollary (3.1)

A non-Riemannian two dimensional Finsler space F_2 is semi-P2-like.

with the help of (3.2) in to (3.1), we get the relation (2.1). and also (2.1) can always be expressed in the form (3.1). Therefore, we observe that if a C2-like Finsler space is semi-P2-like then such a semi-P2-like Finsler space is characterized by (2.1).

The condition $P_i=0$ in view of (3.1) and (3.2) gives $P_{ijk}=0$. Conversely, $P_i=0$ is the necessary condition for a Finsler space to be a Landsberg space. Therefore, we can state:

Theorem (3.1)

The necessary and sufficient condition in order that a semi-P2-like Finsler space be a Landsberg space if and only if $P_i=0$.

Certain examples are there of C2-like Finsler spaces, few of them are given below.

We now make the assumption that a semi-P2-like Finsler space F_n is a P*-Finsler space, then in view of the relation (1.5) and (3.1), we get

$$C_{ijk} = \frac{1}{\lambda} (B_i C_j C_k + B_j C_k C_i + B_k C_i C_j) .$$

Consequently, (1.9) tells that the space under consideration is C2-like provided $\lambda \neq 0$. on the other hand $\lambda = 0$ will tell that the space under consideration is a Landsberg Space. Therefore, we can state:

IJMDRR E- ISSN -2395-1885 ISSN -2395-1877

Theorem (3.2)

The necessary and sufficient condition in order that a non- Landsberg P*-Finsler space be semi-P2-like is that it is a C2-like Finsler space.

We now consider a P2-like Finsler space. Contracting (1.a) with respect to \dot{x}^i , we get

$$P_{ijk} = \lambda_0 C_{ijk}$$
,

which shows that a P2-like Finsler space is a P*-Finsler space. Therefore, in view of theorem (3.2), we can state

Theorem (3.3)

A non-Landsberg P2-like Finsler space is semi-P2-like if and only if it is C2-like.

In view of the relation (3.1), (3.2) and $P_i = \mu C_i$ (assume), we get

$$(3.4) P_{ijk} = \frac{\mu}{C^2} C_i C_j C_k.$$

Conversely, the relation (3.4) gives $P_i = \mu C_i$, which yields

Theoerm (3.4)

The (v) hv-torsion tensor of a semi-P2-like Finsler space is given by (3.4) if and only if $P_i = \mu C_i$.

In order to find the form of hv-curvature tensor P_{hijk} of semi-P2-like Finsler space, we have from (1.3) and (3.1)

 $(3.5) P_{hijk} = \Theta_{(hi)} [B_{i|h}C_jC_k + C_jQ_{ikh} + C_kQ_{ijh} + C_iL_{ikh} + L_{ik}B_{jh} + C_iC_kF_{jh}]$ where (3.6) (a) $Q_{ikh} = B_i C_{k|h} + C_i B_{k|h}$, (b) $L_{ikh} = B_i C_{k|h} + B_k C_{i|h}$, (c) $L_{ik} = C_i B_k + B_i C_k$, (d) $\boldsymbol{B}_{ii} = \boldsymbol{C}_r \boldsymbol{C}_{ii}^r$, (e) $F_{ii} = B_k C_{ii}^k$,

We now consider a semi-P2-like Finsler space which is P- symmetric. Keeping in mind (1.7) and (3.5), we get (3

7)
$$\Theta_{(hi)} = [L_{ik}B_{jh}L_{ij}B_{kh} + C_iC_kF_{jh}C_iC_jF_{kh}] = 0$$

Therefore, we can state:

Theorem (3.5)

The necessary and sufficient condition in order that a semi-P2-like Finsler space be P-symmetric is given by (3.7).

In the last, we consider that a semi-P2-like Finsler space admits a concurrent vector field X_i [5]. Then $X_{i}^i = -\delta_i^i$

and $X_{i}^{i} = 0$, which gives

$$(3.8) \, \mathbf{P}_{ijk} X^{i} = 0 \quad , \quad \mathbf{C}_{ijk} X^{i} = 0 \quad .$$

From second relation of (3.8), we get $C_i X^i = 0$. Consequently, (3.1) with the help of

these relations yields

$$B_i X^i C_j C_k = 0.$$

Contraction of the above relation with g^{jk} will give $B_i X^i = 0$. Therefore, we can state:

Theorem (3.6)

If a concurrent vector field X_i is admitted by a semi-P2-like Finsler space, then the vector B_i is orthogonal to X^i .

Research Paper Impact Factor: 6.089 Peer Reviewed Monthly Journal www.ijmdrr.com

IJMDRR E- ISSN –2395-1885 ISSN -2395-1877

References

- 1. Akbar-Zadeh,H.Les espaces de Finsler et certaines de leura generalizations,Ann.Sci.Ecole.Norn.Sup.(30) 80, 1-79,(1963).
- 2. Deicke, A. Uber die Finsler- Raume mit $A_i = 0$, Arch. Math.(4),45-51,(1953).
- 3. Izumi, H.On *P**- Finsler spaces. I. Memo Defense Academy, 16, 133-138(1976).
- 4. Matsumoto, M. n h-isotropic and C^h recurrent Finsler spaces, J.Math. Kyoto Univ. 11, 1-9,(1971).
- 5. Matsumoto, M.Finsler spaces admitting a concurrent vector field, Tensor and (N.S.), 28, 239-249,(1974). Eguchi, K.
- 6. Matsumoto, M. On semi C-reducible Finsler spaces with constant and coeficients and C2 like Finsler spaces, Tensor(N.S.), 34, Numata, S , 218-222, (1980).
- 7. Matsumoto, M. On Finsler spaces with the curvature tensors **P**_{hijk} and **S**_{hijk} satisfying special conditions, Rep. on Math. Phys., 12, 77-87, (1977).
- 8. Rund, H The Differential geometry of Finsler spaces, Springer-Verlag, Berlin(1959).