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Abstract
This paper is focused on the solution of the Multi-Objective Linear Transportation Problem using compensatory fuzzy
approach via Fuzzy programming Algorithm. Here Supply and Demand are Trapezoidal Fuzzy Numbers. By using linear
solution techniques, our approach generates compromise solutions which are both compensatory and Pareto-optimal. We
use the hyperbolic membership function .The results of the problem reveal that if we use the hyperbolic membership function,
then the crisp model becomes linear. This is illustrated by an example.
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1. Introduction
The transportation problem is a special type of linear programming problem and it has wide practical applications in
manpower planning, personnel allocation, inventory control, production planning, etc. The parameters of the transportation
problem are unit costs (or profits), supply and demand quantities. The unit cost cij is the coefficient of the objective function
and it could represent transportation cost, delivery time, number of goods transported unfulfilled demand, and many others.
Thus multiple objectives may exist concurrently which lead to the research work on multi-objective transportation problems
(MOTP). Also in practice, the parameters of MOTP are not always exactly known and stable. This imprecision may follow
from the lack of exact information, changeable economic conditions, etc. A frequently used way of expressing the
imprecision is to use the fuzzy numbers.

Hussein [9] deal with the complete solutions of MOTP with possibility coefficients. Das et al. [6] focused on the solution
procedure of the MOTP where all the parameters have been expressed as interval values by the decision maker. Ahlatcioglu
et al. [2] proposed a model for solving the transportation problem that supply and demand quantities are given as triangular
fuzzy numbers bounded from below and above, respectively. Basing on extension principle, Liu and Kao [14] developed a
procedure to derive the fuzzy objective value of the fuzzy transportation problem where the cost coefficients, supply and
demand quantities are fuzzy numbers. Using signed distance ranking, defuzzification by signed distance, interval-valued
fuzzy sets and statistical data, Chiang [5] get the transportation problem in the fuzzy sense. Ammar and Youness [3]
examined the solution of MOTP which has fuzzy cost, source and destination parameters. They introduced the concepts of
fuzzy efficient and parametric efficient solutions. Islam and Roy [10] dealt with an multi-objective entropy transportation
problem with an additional delivery time constraint, and its transportation costs are generalized trapezoidal fuzzy numbers.
Chanas and Kuchta [4] proposed a concept of the optimal solution of the transportation problem with fuzzy cost coefficients
and an algorithm determining this solution.

Pramanik and Roy [18] showed how the concept of Euclidean distance can be used for modeling MOTP with fuzzy
parameters and solving them efficiently using priority based fuzzy goal programming [25] under a priority structure to arrive
at the most satisfactory decision in the decision making environment, on the basis of the needs and desires of the decision
making unit.

2.  The Formulation of MOLTP with Fuzzy Parameters
The MOLTP [1] is formulated as follows:
min zk(x) = , k = 1,2,...,K

Subject to

(1)

,∀
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Where is decision variable refers to product quantity that transported from supply point i to demand point j. The

capacities of the supply and demand points are denoted by ai and bj.

The unit cost for transporting the goods from supply point i to demand point j for the objective k, (k = 1, 2. . . K) is denoted
by where K is the number of the objective functions. If at least one of these parameters is assumed as fuzzy, then a

MOLTP with Fuzzy Parameters arises. In such case , and are called as n fuzzy supply and m

fuzzy demand quantities, respectively. Similarly, is called as fuzzy unit transportation cost from supply point i to

demand point j for the objective k, (k = 1, 2. . . K) .

3. Preliminaries
Definition: 3.1.
Pareto-optimal solution for MOLTP [8]

Let S be the feasible region of (1). is said to be a Pareto-optimal solution (strongly efficient or non-dominated) if and

only if there does not exist another x S such that zk(x) zk( ) for all k = 1, 2, . . . , K and zk(x) zk( ) for at least one k

= 1, 2, . . . , K.

Definition: 3.2.
Compromise solution for MOLTP
A feasible solution is called a compromise solution of (1) if and only if and zk( ) , where

z(x) = (z1(x), z2(x), . . . , zk(x)), stands for “min” operator and E is the set of Pareto-optimal solutions.

Definition: 3. 3.
Trapezoidal Fuzzy Number:
(TFN) is a convex fuzzy set which is defined as (x)) where:

Fig.1 Trapezoidal Fuzzy Number (TFN)
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4. Compensatory Fuzzy Aggregation Operators
There are several fuzzy aggregation operators. The detailed information about them exists in [26] and [21]. The most
important aspect in the fuzzy approach is the compensatory or non-compensatory nature of the aggregation operator. Several
investigators [11, 15, 19, 26] have discussed this aspect.

Using the linear membership function, Zimmermann [27] proposed the “min” operator model to the Multi-objective linear
problem (MOLP). It is usually used due to its easy computation. Although the “min” operator method has been proven to
have several nice properties [15], the solution generated by min operator does not guarantee compensatory and Pareto-
optimality [7, 13, 24]. The disadvantage of the aggregation operator “min” is that it is non-compensatory. In other words, the
results obtained by the “min” operator represent the worst situation and cannot be compensated by other members which may
be very good. On the other hand, the decision modeled with average operator is called fully compensatory in the sense that it
maximizes the arithmetic mean value of all membership functions. Zimmermann and Zysno [28] show that most of the
decisions taken in the real world are neither non-compensatory (min operator) nor fully compensatory and suggested a class
of hybrid compensatory operators with compensation parameter. Basing on the -operator, Werners [23] introduced the

compensatory “fuzzy and” operator which is the convex combinations of min and arithmetical mean:

μand = ( ),

where 0 μi 1, i = 1, 2, . . . ,m and the magnitude of [0,1] represent the grade of compensation.

This operator is not inductive and associative, it  is commutative, idempotent, strictly monotonic increasing in each
component, continuous and compensatory.  In literature, it is showed that the solution generated by Werners’ compensatory
“fuzzy and” operator does guarantee compensatory and Pareto-optimality for MOLP [15, 19–24, 28]. Thus this operator is
also suitable for our MOLTP. Therefore, due to its advantages, in this paper, we used Werner’s compensatory “fuzzy and”
operator.

5.  A Compensatory Fuzzy Approach to MOLTP with Fuzzy Parameters [8]
Our compensatory fuzzy approach aims to convert the fuzzy supply and demand quantities to crisp ones. First of all, the
fuzzy supply and demand quantities are converted to crisp forms to satisfy the balance condition. By using of the “min” fuzzy
operator model proposed by Zimmermann
[27], the problem
max min μai ,μbj , i = 1, 2, . . . ,m, j = 1, 2, . . . ,
subject to

, j=1, 2...m∀ ≥0,         i=1, 2……m,j=1,2…,n
is solved for obtaining a solution which maximizes the least degree of satisfaction among all supply and demand quantities.
By introducing the auxiliary variable β,

min μai ,μbj = β μai ≥ β, μbj ≥ β,

this problem can be converted into the following equivalent maximization problem:
max β
subject to μai(ai) ≥ β, i=1,2,…..m

μbj(bj) ≥ β, j=1,2,…..m
(1)∀ ≥0,         i=1,2……m, j=1,2…,n

β
By solving (1), crisp supply-demand quantities are determined at the maximum satisfactory
degree in order to get the following balance condition:
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Let Lk and Uk be the lower and upper bounds of the objective function zk, respectively. Lk and Uk can be determined as
follows: Solve the MOLTP as a single objective TP using each time only one objective and ignoring all others. Determine the
corresponding values for every objective at each solution derived. And find the best (Lk) and the worst (Uk) values
corresponding to the set of solutions.

The lower and upper bounds Lk and Uk can also be determined for each objective
zk(x)(k = 1, 2, . . . , K) as follows:

Lk = , Uk =

where S is the feasible solution space that is satisfied supply-demand and non-negativity constraints. For the sake of
simplicity, we used the linear membership function:

( ) =

Here, ( ) = 1. The membership function ( ) is

linear and strictly monotone decreasing for in the interval [Lk, Uk ].Using Zimmermann’s minimum operator [27],

MOLTP can be written as:
( )                           (2)

Subject to

By introducing an auxiliary variable (2) can be transformed into the following equivalent conventional LP problem:

Max

Subject to ( )

(3)

It is pointed out that Zimmermann’s min operator model doesn’t always yield a strongly - efficient solution [7, 13, 24]. By
using Werner’s operator,[13] is converted to as follows:

Max ( + )

Subject to

( )

(4)

So, our compensatory model generates compensatory compromise Pareto-optimal solutions
for MOLTP.
We shall prove this assertion in the following theorem.
Theorem: 1.
If (x, ) is an optimal solution of problem (4), then x is a Pareto-optimal solution

for MOLTP, where = ( )

Proof: Suppose, to the contrary, there exists a feasible solution (y, ) such that y .

This means zk( y) ≤ zk(x), k = 1, 2, . . . , K, and zk( y) < zk(x) for some k. Thus, for the membership functions of objectives, it
can be written as
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μk(zk( y)) μk(zk(x)), ∀k = 1, 2, . . . , K and μk(zk( y))>μk(zk(x)),

for some k. And this implies that there exist and satisfying

μk(zk( y)) = μk(zk(x)) = , ∀k = 1, 2, . . . , K

and

μk(zk( y)) = >μk(zk(x)) = , for some k. Therefore, it holds that

, ∀ k = 1, 2, . . . , K and > , for some k.

This means that and so

that is, μand( y, ) > μand(x, ), and this is contradictory to the fact that (x, ) is an optimal solution to problem (4). If

required, Pareto-optimality test [2] can be applied to the solutions of (4) and it could be seen that these solutions are Pareto-
optimal for MOLTP.

6. Linear Programming Formulation of MOTP [16]
A MOTP can be stated as:
Minimize = , k = 1,2,...,K

Subject to

,∀
The subscription Zk and superscript on denote the Kth penalty criterion. We assume that for all i, for all

j, for all i and j, and

(Equilibrium condition)

is the quantity of material available at source

(i=1, 2 ,...,m)

is the quantity of material required at destination

( j=1 , 2 ,..., n) and

to destination .

7. Fuzzy Programming Technique to Solve MOTP
To solve MOTP in Fuzzy Programming Technique [12] , we first find the lower bound as Lk and the upper bound as Uk for
the K th objective function Zk, k =1, 2,. ...,k where U k is the highest acceptable level of achievement for objective k, Lk is the
aspired level of achievement for objective k and dk = Uk – Lk is the degradation allowance for objective k.

To form a fuzzy model, convert it into a crisp model with the aspiration levels for each of the objective are to be  specified.
The solution of MOTP can be obtained by the following steps:

Step: 1.Solve the MOTP as a single-objective transportation problem K times by taking one of the objectives at a time
Step: 2. Determine the corresponding values for every objective at each solution derived. According to each solution and
value for every objective, we can find a pay-off matrix as follows:

Z1(X) Z2(X) ZK(X)

X(1) Z11 Z22 Z1K

X(2) Z21 Z22 Z2K

X(K) Zk1 Zk2 ZkK
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Where X(1) , X(2),…,X(k) are the isolated optimal solutions of the K different transportation problems for K different objective
function, = ( ), i=1,2,…,K; j = 1, 2,…,k be the ith row and jth column element of the pay-off matrix.

Step: 3. From step 2, find for each objective the Uk and the Lk corresponding to the set of solution, where, Uk =
maximum(Z1k,Z2k,…Zkk) and
Lk = minimum (Z1k, Z2k,…,Zkk )k = 1,2,…,K

An initial fuzzy model of the problem can be obtained as
, i=1, 2… m, j = 1, 2… n

, k =1, 2… k
Subject to

,∀
Step: 4. Define a membership function for the kth objective function

Step: 5. Convert the fuzzy mode of the problem, obtained in step, into the following crisp Model;

Maximize

Subject to

,∀
Step: 6. Solve the crisp model by an appropriate mathematical programming algorithm
Step: 7 The solution obtained in step 6 will be the optimal compromise solution of the MOTP

8.  Fuzzy Programming Technique with Hyperbolic Membership Function [17]
A hyperbolic membership functions is defined by

( )=

Where

If we will use the hyperbolic membership function then an equivalent crisp model for the fuzzy model can be formulated as:
Maximize

Subject to

, k = 1,2,…k     (1)

(2)

,∀
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Constraint (1) can further be simplified as:

tanh

tanh

Now, putting = , constraint (1) is converted to

Hence, the given problem is simplified as:
Maximize

Subject to

, k=1,2,….k

(2)

,∀

where

7. Example
Let us consider a MOLTP with the following characteristics:
Supplies: = (16,25,36,49), = (36,49,64,81), = (25,36,49,64),

Demands: = (36,49,64,81), = (37,45,60,77), = (4,16,25,36)

Costs:

=

=

Solution:
Using the Robust ranking technique,

= 31.5, = 57.5, = 43.5,

= 57.5, = 54.75, = 20.25

Costs:

=
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=

The developed problem can be formulated as:
Min Z1 = 5.25X11+11X12+13X13+6.25X21+7.5X22+11.5X23+

14.75X31+16.5X32+9X33 (2)

Min Z2 = 8.75X11+9X12+16.25X13+10.25X21+7.5X22+10.25X23+

16.75X31+18.75X32+17.5X33 (3)

Subject to:

(4)

Here Z1 and Z2 represent the total cost and the total time of transportation respectively.

Solving equations (2) and (4), we obtain the optimal solution as:

X1 =

Z1 (X1) = 1118.375, Z2 (X1) = 1458.25

Solving equations (3) and (4), we obtain the optimal solution as:

X2 =

Z1 (X2) = 1197.125, Z2 (X2) = 1510.75

The outcomes obtained from step 1 give the following pay-off matrix as;

From the pay – off matrix we obtain

If a compensatory fuzzy approach is employed, the crisp model can be presented as follows:

Max ( + )

Subject to
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5.25X11+11X12+13X13+6.25X21+7.5X22+11.5X23+

14.75X31+16.5X32+9X33 +78.75 1197.125

8.75X11+9X12+16.25X13+10.25X21+7.5X22+10.25X23+

16.75X31+18.75X32+17.5X33 +52.5 1510.75

The compensatory compromise pareto - optimal solution of the above problem is thus presented as below:

X* =

= 1118.375; = 1;

If we use the hyperbolic membership functions, an equivalent crisp model can be formulated as:

Maximize X10
Subject to:
0.4001X11+0.8382X12+0.9906X13+0.4763X21+0.5715X22+0.8763X23+

1.12395X31+1.2573X32+0.6858X33 +

1.0001X11+1.0287X12+1.8574X13+1.1716X21+0.8573X22+1.1716X23+

1.9145X31+2.1431X32+2.0003X33+

Solving the above problem, the optimal solution is shown a follows:
X* =

= 1129.875; X10 = 14

8. Conclusion: In this paper, we deal with MOLTP whose costs and supply-demand quantities are given as trapezoidal fuzzy
numbers. In the first stage the defuzzification of the parameters of MOLTP is done. Applying Werner’s μand operator, our
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approach generates a solution for each member of this set. This compromise solution of MOLTP with fuzzy parameters is
both compensatory and Pareto-optimal.
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